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Abstract
Users often have access to multiple forecasts regarding an event.
Different forecasts incorporate different assumptions and epistemic
information. A growing body of work argues against decision-
making solely based on expected utility maximisation strategies in
multiple forecasts scenarios, in favour of other strategies such as the
maximin expected utility. In this work, we compare two different ap-
proaches for depicting epistemic uncertainty—ensembles (a direct
representation of multiple forecasts) and p-boxes (a representation
which only communicates the bounds of epistemic uncertainty)—in
plots where individual distributions are represented as cumulative
distribution plots (CDFs). We conduct three experiments to investi-
gate the impact of the visual representation on the decision-making
strategies that people adopt. Our results suggest that participants
adopt conservative decision-making strategies (i.e. place greater
weight on the worst-case forecast than the best-case forecast) for
both p-boxes and ensembles if the set of forecasts are uniformly
distributed. However, if a majority of the forecasts are clustered
near one of the bounds, participants may discount the forecast
which appears as a visual outlier.

CCS Concepts
• Human-centered computing → Empirical studies in visual-
ization; Visualization design and evaluation methods.
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1 Introduction
Consider the following scenario—you are deciding whether or not
to carry an umbrella before going out for the day. You receive a
notification from Apple Weather on your phone that there is a high
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chance of rain (say 60%) in your location. Now, while you do not
want to carry a large umbrella around with you all day, you’d also
prefer not to get wet. In such a scenario, you could come up with
utilities for each possible action and outcome, and then, taking the
probability of rain into account, determine an action which will
maximise your expected utility—this action would be the optimal
decision. However, you also have Accuweather and The Weather
Channel apps on your phone, and according to those apps, the
probability of rain is 30% and 25%, respectively. You now have three
different estimates for the probability of rain, and you do not have
any reason to trust one forecast more than the others. Will you
take your umbrella with you? How should you decide?

As probabilistic forecasts have become more commonplace and
widely used for decision-making, we now often have access to more
than one forecast for any particular event. Examples include covid-
19 death projections [3, 13] presidential elections [26], or even
more mundane events such as the daily high temperature or the
chance of rain. More importantly, the different agencies reporting
these forecasts tend to use slightly different models, incorporating
different assumptions or domain knowledge [3, 16, 17], which can
result in somewhat varying estimates or predictions.1

These forecasts integrate two kinds of uncertainty: one is the
quantifiable uncertainty arising due to statistical variability,2 which
we will refer to as probabilistic uncertainty; the other is the “un-
certainty about the modeling process as a description of reality”
[57] which, following Ferson and Siegrist [12], we will refer to as
incertitude.3 In a single forecast scenario, the only form of uncer-
tainty is probabilistic. Thus, a decision-maker who is acting based
on the Expected Utility Maximisation principle (see §2.1) would
obtain the best results [46, 53]. However, with multiple forecasts,
a decision-maker encounters both probabilistic uncertainty and
incertitude. To use the Expected Utility Maximisation principle
(or any other decision strategy) in this scenario would require the
decision-maker to resolve or reconcile the two different forms of
uncertainty, often through additional assumptions. For example,

1For instance, during the peak of the pandemic, FiveThirtyEight maintained a dash-
board of covid-19 death projections from 10 different institutions [3], and outlined
the different assumptions that are made by each of these models.
2There have been numerous attempts at developing taxonomies for categorising the
types of uncertainty which often involve some combinations of the words aleatory,
epistemic and ontological. Here, going by the definitions proposed by Spiegelhalter [57],
by statistical variability we refer to uncertainty which is not ontological but overlaps
with the offered definitions of aleatory and epistemic uncertainty to a certain degree
3For consistency, this type of uncertainty is also referred to as epistemic or, based on
Spiegelhalter’s [57] definitions, ontological uncertainty. While the addition of a new
term(s) is admittedly only contributing to this terminology hell, we do not understand
nor share the fondness of Latin terms that others in academia seemingly possess.
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the decision-maker might decide to weigh the forecast with the
highest chance of rain more heavily in making their decision.

Unfortunately, there is no consensus on how people should be-
have with such ambiguous information. Researchers in decision
theory and other fields have proposed numerous strategies which
may be suitable, depending on the decision-making context. One
approach, known as the principle of indifference [55], is to not dis-
tinguish between the two types of uncertainty, and consider each
forecast to be equally likely. The decision-maker can then assume a
uniform prior distribution over the set of forecasts, allowing them
to reduce the uncertainty from multiple distributions to a single
distribution, and maximise expected utility. This approach has been
the primary view adopted by recent work in visualisation and hci
[20, 32, 38]. Alternatively, a decision-maker can treat the two types
of uncertainty as being qualitatively different. Instead of adopting
a uniform prior distribution over the set of forecasts, this perspec-
tive proposes approaches [e.g., 7, 14, 19, 23, 29, 30, 34] which place
greater emphasis on the outcome under the worst case scenario
or outcomes under a wide range of possible scenarios, and better
reflect a decision-maker’s aversion to incertitude (e.g., the maximin
criterion for expected utility).

Just as there are different ways of visualising probabilistic uncer-
tainty (e.g., confidence intervals, probability density plots, dotplots,
cumulative distribution plots etc.), there are also different ways of
visually depicting incertitude—e.g., ensembles and probability boxes
(or p-boxes). Ensembles are commonly used to visualise multiple
forecasts, and they faithfully depict the distributional information
from each forecast. However, prior work has argued that ensembles
may be misinterpreted, with the viewer perceiving more frequently
occurring distributions as more likely [22, 49]. As an alternative,
Ferson and Siegrist [12] propose p-boxes to communicate both prob-
abilistic uncertainty and incertitude, without, at least theoretically,
conflating the two. P-boxes (see Figure 1) are specified by the left
and right bounds of the cumulative distribution functions of a set
of uncertainty distributions (forecasts). While we cannot resolve
theoretical disagreements on how to treat multiple forecasts, we
hypothesise that different visual representations of incertitude
will lead to behaviours that are better aligned with different
decision-making strategies.

Neither ensembles nor p-boxes have been empirically evalu-
ated on their impact on decision-making under multiple forecasts.
We aim to measure that alignment so that decision-makers can
adopt visualisations of incertitude that better match their deci-
sion criteria. Specifically, the objective of this paper is to eval-
uate the impact of using different visualisations of incerti-
tude on users’ decision-making strategies in an incentivised
decision-making task, for a specific representation of probabilis-
tic uncertainty—cumulative distribution plots (CDFs). We conduct
three pre-registered experiments. In Experiment 1, we compare
decision-making when participants are presented with either p-
boxes or ensembles of approximately uniformly distributed fore-
casts. The results suggest that both p-boxes and ensembles can
lead to participants adopting uncertainty-averse decision-making
strategies where the worst-case scenario is weighted more heavily.
In Experiment 2, we examine how the distribution of the forecasts
in an ensemble representation impact decision-making and present
participants with ensembles of forecasts which are either skewed

left or skewed right. We find that participants’ decision-making
strategies are predominantly based on the main cluster of forecasts
but were still somewhat uncertainty-averse on average. We con-
ducted Experiment 3 as a robustness check to assess the impact of
a difference in phrasing between the two conditions (p-boxes and
ensembles) in Experiment 1, and found no evidence to suggest an
effect. Taken together, our results suggest that, unlike p-boxes, in
the case of ensemble representations, the decision-making strate-
gies participants adopt will likely vary based on how the forecasts
are distributed. Based on our results, we outline a set of design
recommendations for representing multiple forecast distributions.

2 Background
Our work draws upon: (1) prior work about various decision-
making strategies under incertitude in fields such as decision theory
and risk analysis; and (2) uncertainty visualisation approaches.

2.1 Perspectives from Decision Theory and Risk
Analysis

In decision theory, researchers typically distinguish between uncer-
tainty which can be quantified or statistically characterised (which
is typically referred to as risk in economics, and as aleatory uncer-
tainty in statistics) from uncertainty which is unquantifiable [57]
(which is referred to as ambiguity [10], Knightian uncertainty [28],
or even epistemic uncertainty [43]). In risk analysis, “situation(s)
where the decision-makers do not know or cannot agree on a single
probability density function of the outcomes” are referred to as deep
uncertainty [34]. Using this lens, the uncertainty in a single forecast,
which is often described using a probability distribution function,
can be considered probabilistic uncertainty; the uncertainty due to
lack of perfect knowledge about the data generating process, which
results in multiple forecasts each encoding different assumptions
about the data generating process, can be considered incertitude.
A consequence of incertitude is that probability for a particular
outcome is either unknown or cannot be precisely stated.

Decision-making in scenarios with both forms of uncertainty
requires the decision-maker to make certain assumptions to resolve
the two forms of uncertainty. A common assumption is the principle
of indifference [55], which suggests that in the absence of any other
information, the decision-maker should not distinguish between the
two types of uncertainty and consider each forecast to be equally
likely. The decision-maker can then assume a uniform prior over
the set of forecasts, and consider the average of all the distributions
when making a decision. Recent work in visualisation and hci
[20, 32, 38] have primarily adopted this perspective. However, there
are three arguments against this principle: (1) it fails to distinguish
between the two types of uncertainties, which many argue are
qualitatively different; (2) it fails to take into account for people’s
aversion to uncertainty; and (3) it is sensitive to howmany forecasts
are available to the decision-maker.

Gardenfors and Sahlin [21] argue that people treat the two
forms of uncertainty differently. They provide an example where a
decision-maker is asked to bet, at equal odds, on the outcome of
three events—the forecasts for each event estimates the expected
probability to be the same (0.5), but the forecasts themselves have
different degrees of uncertainty (see adjacent figure). Gardenfors
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and Sahlin argue that while a decision-maker is
likely to take the first bet, they are unlikely to do
so for the second and third bets as these forecasts
are less reliable. The Ellsberg paradox [10] demon-
strates that in a game of chance where the under-
lying probabilities are unknown, participants em-
ploy decision rules which are incompatible with
expected utility maximisation. One explanation of
people’s behaviour in both of these examples is
their aversion to incertitude [19, 41].

Decision theorists have proposed alternative
strategieswhich allow the decision-maker to trans-
form the problem of incertitude—decision-making
under multiple uncertainties—into a problem of
partial certainty [e.g., 19, 21, 23, 27, 33]. One such
strategy is the maximin criterion for expected util-
ity (MMEU), which recommends the action with
the largest minimal expected utility [19, 21]. An-
other is the optimism-pessimism rule, which trades
off a little bit of certainty for potentially higher utilities by ask-
ing the decision-maker to weigh both the best and worst possible
outcomes for each alternative [23, 41] according to an optimism
parameter. We discuss these strategies in more detail in §3.

In risk analysis, Lempert and Collins [30] argue that while ex-
pected utility maximisation has been widely adopted for many
problems in this domain, it only yields the best answer if the “uncer-
tainty is well characterised.” However, for many decision problems
uncertainty information may be imprecise, ambiguous, or even ab-
sent. Researchers seek to identify robust decision-making strategies
which are predicated on the assumption of precaution and taking
into consideration performance in the worst-case scenario [30, 34].
Many of these strategies have their roots in decision theory [30].
For instance, the Limited Degree of Confidence strategy [7, 14, 29],
which maximises a weighted average of the expected utility and the
utility in the worst-case scenario is similar to, and can be expressed
in terms of the optimism-pessimism rule.

2.2 Visualising multiple forecasts
Probabilistic information is frequently represented using visual rep-
resentations such as text [e.g., 11, 18, 65, 66], confidence intervals
[e.g., 2, 11, 25, 52, 66], probability density plots [e.g., 11, 25, 52], dot-
plots [e.g., 11, 25, 66] and cumulative distribution plots [e.g., 11, 24],
and some of these uncertainty visualisations can improve decision
quality under uncertainty [e.g., 11, 25, 37, 54]. To accurately visu-
alise multiple forecasts, we need to communicate both probabilistic
uncertainty in the prediction of a single forecast, as well as incerti-
tude due to presence of multiple forecasts. Forecasts from multiple
models have been commonly depicted using ensembles of represen-
tations for singular probability distributions (Figure 1) [9, 32, 39, 48].
However, when used to represent forecasts from multiple models,
ensembles may be misconstrued as providing probability or fre-
quency information—readers may consider a greater frequency
of similar curves to represent forecasts which are more probable.
While this might be the desired interpretation in some cases [e.g.,
9, 39, 47], in others, such as the scenarios being considered in this
study, that is not the case.

To avoid misinterpreting more frequent forecasts as being more
probable, we consider other graphical representations which would
allow us to vary how incertitude is visualised for the same
probabilistic uncertainty representation. Ferson and Siegrist
[12] propose probability bounds analysis as a calculus for imprecise
probabilities, and propose probability boxes (p-boxes) as an alterna-
tive approach to visualising multiple forecasts consistent with the
notions of probability bounds analysis. A p-box is specified by the
“left and right bounds on the cumulative probability distribution
function of a quantity” (see Figure 1) and communicates variability
(i.e. probabilistic uncertainty) as the slant of any curve within the
bounds; it communicates incertitude through the width between
the left and right edges of the box [12].

Bounds on cumulative distribution plots (CDFs) are formally con-
sistent with the notions of worst-case (and best-case analysis)—they
represent well-formed objects that can be manipulated by the calcu-
lus of imprecise probabilities [12]. For example, a p-box constructed
from a set of CDFs represents a set of probability distributions—any
(monotonically increasing) curve which can be contained within
the bounds. Bounds constructed using other uncertainty represen-
tations such as probability density plots (PDFs) will not capture
the same set of distributions as bounds on CDFs (see Figure 2), and
therefore do not correspond to well-formed objects in the calculus
for imprecise probabilities—the (visual) operator of finding valid
members of a p-box (any monotonically increasing curve) is not
valid for bounds on PDFs. Additionally, while the construction of
a p-box from a CDF is straightforward, and results in an elegant,
unified representation of both probabilistic uncertainty and incer-
titude, bounds constructed from PDFs can result in idiosyncratic
shapes (e.g., the p-box constructed from the distributions in Figure 2
results in a bimodal shape).

For the tasks in our experiment (estimating tail probabilities),
prior work has found CDFs to be highly effective [24]. CDFs allow
a viewer to directly read tail probabilities (e.g., Pr(𝑇 < 0)) on the
y-axis, whereas estimating tail probabilities from other represen-
tations, such as PDFs, require the viewer to make less accurate
area comparisons [36, 59, 60]. CDFs have also been found to be
effective in decision-making tasks similar to the one used in the
current study [11]. Other representations such as intervals, while
commonly used, provide viewers with limited distributional infor-
mation compared to CDFs and PDFs. Finally, consonance curves
can also be used to visualise bounds on a set of distributions in a
consistent manner [49], but we considered this representation to
be more complex than CDFs, and omitted it from our current study.

A p-box is specified by the lower 
and upper bounds of several CDFs. 
If the lower (A) and upper (E) 
bounds of any set of CDFs are the 
same, it will result in the same p-box.

Ensemble plots can show several 
uncertainty distributions 
super-imposed over one another. 
Here, we present the results as 
cumulative density functions (CDFs).
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Figure 1: The two representations considered in the study,
ensembles of CDFs and p-boxes.
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Figure 2: Bounds constructed using Cumulative Density Plots
(CDFs) and Probability Density Plots (PDFs) are not equiva-
lent, as certain distributions which are within a p-box con-
structed from CDFs will not be within the bounds of PDFs.

In theory, by suppressing information regarding the frequency
of each individual forecast distribution, p-boxes, according to the
expressiveness principle [36], should not allow a reader to draw
probabilistic conclusions about the forecasts, thereby potentially
overcoming the limitations of representations such as ensembles.
However, whether viewers of p-boxes interpret the visualisation as
intended has not been empirically evaluated. Moreover, whether
viewers of ensemble CDF plots indeed misinterpret the presented
information (i.e., assume an incorrect probabilistic interpretation)
as claimed has also not been empirically evaluated. We aim to
address this gap in the current work.

3 Decision-Making Under Single and Multiple
Forecasts

We describe the decision-making strategies for both single and
multiple forecast scenarios using the decision task that we presented
to participants.
Single forecast. We adapt the following hypothetical scenario
from Padilla et al. [40]:

Assume that you work at the Red Cross, and your job
is to manage resources for farms in Peru. In previ-
ous years, alpacas have died in Peru from cold tem-
peratures. Alpacas can typically withstand the cold
unless the temperature drops below 0°C (32°F). You
are in charge of the Red Cross’s blanket budget, and
it is your job to issue blankets to the alpacas when
temperatures fall below 32°F, which will help them
withstand the cold. You have a budget for 18 days of
$18,000. Purchasing and delivering blankets to farm-
ers costs $1,000 (per night). If you fail to issue blankets
to the farmers and the temperature drops below 32°F,
it will cost $5,000 from your budget. You are shown a
night-time temperature forecast distribution. Based
on this forecast, you have to decide whether to issue
blankets to the alpacas.

The payoff matrix for the decision problem described above can be
represented using the following table:

𝑠1 : 𝑇 ≤ 0°C (32°F) 𝑠2 : 𝑇 > 0°C (32°F)
𝑎1 : send -1000 -1000
𝑎2 : ¬send -5000 0

Here, 𝑆 = {𝑠1, 𝑠2} represents the two possible states of nature,
and 𝐴 = {𝑎1, 𝑎2} represents the two possible actions that are
available to the decision maker. The incentives correspond to a

utility function 𝑈 (𝑎𝑖 , 𝑠 𝑗 ) = 𝑢𝑖 𝑗 defined over 𝑆 and 𝐴. Finally, the
temperature forecast provided is a single probability distribution
P : 𝑆 → [0, 1]. In other words, P gives the probability of each
state 𝑠𝑖 occurring. Thus, the expected utility of any action 𝑎𝑖 is
E[𝑈 (𝑎𝑖 )] =

∑
𝑗 𝑈 (𝑎𝑖 , 𝑠 𝑗 ) · P(𝑠 𝑗 ). Based on this incentive scheme,

an action 𝑎1 (to send aid to the alpacas) is preferred if and only if:

Since, P(s2) = 1 - P(s1)Let, P(s1) = p

as u11 = u12

u22 = 0

2

1

E(𝑈 (𝑎1)) ≥ E(𝑈 (𝑎2))
𝑢11𝑃 (𝑠1) + 𝑢12𝑃 (𝑠2) ≥ 𝑢21𝑃 (𝑠1) + 𝑢22𝑃 (𝑠2)

𝑢11𝑝 + 𝑢12 (1 − 𝑝) ≥ 𝑢21𝑝 + 𝑢22 (1 − 𝑝)
𝑢1 ≥ 𝑢2𝑝

−1000 ≥ −5000𝑝
𝑝 ≥ 0.2

Thus, the utility-optimal decision in this scenario is to send blan-
kets if the probability of freezing is greater than or equal to 0.2. We
refer to 𝑝 = 0.2 as the optimal crossover point, as it represents the
probability at which a decision maker should not have a prefer-
ence over the two actions. Also note that going forward, wherever
possible, we will be adopting simplified notation for utilities and
probabilities according to 1 .
Multiple forecasts. Now consider the analogous scenario where
the decision maker is instead presented with multiple forecasts:

You will be presented with forecasts from seven differ-
ent agencies, all of which are considered to be reliable.
Based on the forecasts, you will be asked whether you
will issue blankets to the alpacas.

In this scenario, we still have the same set of possible states (𝑆),
the same set of possible actions (𝐴) and the same utilities for each
outcome. However, instead of a single probability distribution de-
scribing the uncertain state of nature, we now have a set of prob-
ability distributions, P = {𝑃1, 𝑃2, . . . , 𝑃𝑛}. As a result, we cannot
determine the expected utility of an action E[𝑈 (𝑎𝑖 )] unless we
make assumptions regarding the probability of each forecast in
P, or determine rules which can help reduce the uncertainty that
is faced by the decision maker. Readers might contend whether
or not these instructions induce a (uniform) prior on the partici-
pants. However, this is espoused in the objectives of this paper—we
expect participants with different philosophies to interpret the in-
formation differently, and we investigate whether the method of
visualising the forecasts impacts which philosophy participants
adopt. Below, we outline rules (which stem from different philo-
sophical interpretations of incertitude) that have been put forth in
the decision-theoretic literature (discussed in §2.1).
The Principle of Indifference: In the absence of any further in-
formation about the quality of the forecasts, one approach for the
decision-maker would be to consider each forecast as equally likely
and assume a uniform distribution over the set of forecasts in P.
Mathematically, the utility-optimal decision, based on this decision
rule, can be represented as choosing the action which maximises
E[𝑈 (𝑎𝑖 )] = 1

𝑛

∑
𝑘 [𝑢𝑖1 · 𝑝𝑘 + 𝑢𝑖2 · (1 − 𝑝𝑘 )] where 𝑝𝑘 is the proba-

bility of freezing for a forecast 𝑃𝑘 ∈ P and 𝑛 = |P |. However, critics
of this approach have argued that it fails to adequately account
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for incertitude and that assuming a uniform prior over the set of
forecasts is a relatively strong assumption—if there is no reason
to think that one forecast is more probable than another, then it
may be arbitrary to conclude they are all equally probable [21, 41].
These critics argue that other decision criteria may imply it is not
irrational to be more uncertainty-averse than what is suggested by
this approach [19, 21, 41].

Maximin Criterion for Expected Utility (MMEU): To incorpo-
rate potentially uncertainty-averse behaviour, decision theorists
have identified pessimistic decision rules such as the maximin cri-
terion for expected utilities. This rule involves selecting the action
which maximises the minimal expected utility: for each possible
action 𝑎𝑖 , the decision maker calculates the expected utility under
the worst possible outcome, i.e. E𝑚𝑖𝑛 [𝑈 (𝑎𝑖 )] = min𝑘 {𝑢𝑖1 ·𝑝𝑘 +𝑢𝑖2 ·
(1 − 𝑝𝑘 )}; they then select the action which leads to the best worst
expected utility: argmax𝑖 E𝑚𝑖𝑛 [𝑈 (𝑎𝑖 )]. By focusing on the worst
possible outcome for each action, MMEU provides a partial cer-
tainty regarding what the outcome will be (i.e., the decision-maker
will, at the very least, obtain the utility associated with the worst
possible outcome) [19, 41].

Maximax Criterion for Expected Utility: By the same logic
as the MMEU, but instead focusing on the best possible outcome,
one can also define the maximax criterion: for each possible ac-
tion 𝑎𝑖 , calculate the utility for the best possible outcome and se-
lect the action which leads to the best best expected utility, i.e.
argmax𝑖 {E𝑚𝑎𝑥 [𝑈 (𝑎𝑖 )]}. While this is not a decision rule that is
typically adopted in practice, the argument is that it is no less
rational than the MMEU [41].

The Optimism-Pessimism rule: Also known as the Hurwicz
rule, this is a generalisation of the maximin and maximax rules.
The decision maker considers the expected utilities under both
the worst-case and best-case scenarios, weighted according to an
optimism parameter 𝛾 . In other words, the expected utility of any
action 𝑎𝑖 is: E𝛾 [𝑈 (𝑎𝑖 )] = 𝛾E𝑚𝑎𝑥 [𝑈 (𝑎𝑖 )] + (1−𝛾)E𝑚𝑖𝑛 [𝑈 (𝑎𝑖 )]; they
then select the action which maximises E𝛾 [𝑈 (𝑎𝑖 )].
As the optimism-pessimism rule is a generalisation of the other
rules, we can use it to describe the decision-making strategies that
are adopted by participants. Thus, 2 , which describes when the
decision to select action 𝑎1 is preferred, can be extended to the
multiple forecasts scenario as:

γ: optimism index

3

p+: upper bound 
of the forecasts 
corresponding to 
��� {u2  pk } 

p_: lower bound 
of the forecasts 
corresponding to 
��� {u2  pk } 

E𝛾 [𝑈 (𝑎1)] ≥ E𝛾 [𝑈 (𝑎2)]

𝑢1 ≥ 𝛾 ·max
𝑘

{𝑢2 · 𝑝𝑘 } + (1 − 𝛾) ·min
𝑘

{𝑢2 · 𝑝𝑘 }

𝑢1 ≥ [𝛾 · (𝑢2 · 𝑝+)+
(1 − 𝛾) · (𝑢2 · 𝑝−)}]

𝑢1 ≥ 𝑢2 [𝛾𝑝+ + (1 − 𝛾)𝑝−]
𝛾𝑝+ + (1 − 𝛾)𝑝− ≥ 0.2

We use the calculations in 2 and 3 to derive a regression model
to analyse the responses of participants in our experiments as a
decision problem in §4.2.

4 Experiment and Analysis
We conduct three preregistered experiments to investigate our
research questions. In Experiment 1, we compare two representa-
tions of multiple forecasts—p-boxes and ensembles—to determine
whether these representations have an impact on the decision-
making strategies that participants adopt (see preregistration).
In Experiment 2, we examine whether the distribution of individ-
ual forecasts within an ensemble have an impact on participants’
decision-making strategies by comparing two different distribu-
tions of ensembles—ensembles skewed left and ensembles skewed
right(see preregistration). We use a mixed factorial design for
both experiments.

In addition, we accidentally used the phrase “equally reliable”
instead of “reliable” to describe the different forecasters in the par-
ticipant instructions for the ensembles condition of Experiment
1 (this was corrected in Experiment 2). This phrasing may have
had an unintended effect of inducing a uniform prior on the par-
ticipants. Due to this mistake, we conducted Experiment 3 as a
robustness check to ensure that our results were not impacted by
the differences in instructions (see preregistration). To preview
the results of this robustness check: we do not believe our results
were impacted by this mistake (see §5.3).

4.1 Experimental Materials
In Experiment 1 and Experiment 2, there are three experimental
variables: (1) the type of uncertainty representation; (2) the number
of forecasts shown (one or many); and (3) the forecast itself. Both
experiments used a mixed-factorial design. The number of fore-
casts, and the forecasts themselves, were varied within-subjects;
representation was varied between subjects. In each experiment,
participants were asked to perform a series of incentivised decision
making tasks (trials) with the same alpaca scenario described in §3.
These tasks were divided into two blocks.
Representations: In both experiments, the single forecasts in the
first block of trials were represented as cumulative distribution
functions (CDFs). In Experiment 1, the uncertainty representations
used were p-boxes and (uniformly distributed) ensembles (see Fig-
ure 3B), varied between-subjects. In Experiment 2, the uncertainty
representations were left-skewed and right-skewed ensembles (see
Figure 3C), varied between-subjects.
Procedure: The first block consists of 18 trials. In each trial partici-
pants were presented with a single forecast in the form of a Normal
distribution with a standard deviation of 2.08 (see Figure 3). We
varied the means of the Normal distribution from 29.5°F to 38°F
in intervals of 0.5 to generate different forecasts. The probability
of freezing corresponding to these forecasts are: Pr(𝑇 ≤ 32°F) =
{0.89, 0.84, 0.74, 0.68, 0.59, 0.5, 0.41, 0.30, 0.24, 0.17, 0.10, 0.07, 0.06,
0.03, 0.02, 0.009, 0.005, 0.003}. The second block consists of 12 trials.
In each trial, participants were presented with a multiple forecast
visualisation. In Experiment 1, the multiple forecasts were subsets
of seven consecutive elements of the set of forecasts used for the
first block. We chose these distributions so that we would be able
to estimate a crossover point even if participants were adopting the
extreme pessimistic (i.e. 𝛾 = 0) or optimistic (i.e. 𝛾 = 1) strategies.
For Experiment 2, we used the same bound for each ensemble fore-
cast as Experiment 1; we then randomly sampled a set of forecast

https://aspredicted.org/TBP_7CD
https://aspredicted.org/3F1_3RS
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Figure 3: Illustration of the stimuli used in the two experiments. Both experiments consisted of two blocks. The first block in
both experiments required participants to perform the binary decision making task based on a single forecast, visualised as
CDFs. In block 2 of experiment 1, participants were presented with either p-boxes or ensembles. In block 2 of experiment 2,
participants were presented with either ensembles skewed right or skewed left. The actual stimuli used in the experiment can
be found in supplement ▶ stimuli.

distributions whose means were at most 1°F from the mean of the
pertinent bound (i.e. the lower bound in the ensembles skewed
right condition and the upper bound in the ensembles skewed left
condition).

After each trial in the first block, we simulate a state of nature
based on the forecast and provide participants with feedback on
how well they performed. This also impacts the final payout they
receive for their participation in the form of bonuses. In the second
block of trials, participants were not provided with any feedback.
Moreover, their performance was not evaluated (i.e., the second
block of trials do not impact the payout that participants receive),
but they were not informed of this, and thus were led to believe that
their performance in the second block would be evaluated as well.
This is because evaluating multiple forecasts would either require
us to assign a probability distribution to the set of forecasts (which
would require us to reify one of the decisions rules described in §3
as being correct in this experiment).

The two blocks in our experiment are necessary for obtaining
precise estimates for the intercept (𝛼), slope (𝛽) and the optimism
(𝛾 ) parameters in our linear-in-logit model (§4.2). Participants’ re-
sponses in the first block of trials (where only single forecasts are
shown) are used to estimate the intercept (𝛼) and slope (𝛽) param-
eters, as shown in line 8 ; the responses in the second block of
trials are used to estimate the optimism parameter. We suspect
that without the two distinct blocks of trials, our model might run
into identifiability issues in distinguishing between the parameters.
We validate whether our model can recover these parameters (see
§4.3) After completing all trials, participants answered one multiple
choice question which asked them to indicate which forecast (lower
bound, median, or upper bound) they primarily used for making
their decisions. They were also asked to describe their strategy for
performing the task using an open text field.

Tutorials and Training. In both experiments, at the onset, we pro-
vide instructions to participants on how to correctly interpret a CDF
plot. This is followed by participants completing two training trials,
before the actual test trials. In the training session, participants
were shown the temperature forecast 𝑇 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (67, 2) and were
asked to report the probability of the temperature falling below 66°F
and 68°F respectively. Participants were then provided feedback on
whether they answered the question correctly or not. The training

trials also served as a comprehension check—we excluded partici-
pants who failed to answer at least one of the questions correctly,
as per our preregistration. This helped us ensure that participants
were correctly reading the CDF plots, which was essential for the
validity of our study [51].

Participants:We recruited all participants from Prolific. Our exper-
iment was only eligible to participants who were fluent in English,
lived in the U.S. (due to the usage of the imperial system in our
stimuli), and on desktop devices. For both experiments 1 and 2, as
per our pre-registrations, we aimed to recruit 150 participants (75
participants in each condition). After excluding participants who
failed to meet our criteria, we had 156 participants (76 in the p-box
condition and 80 in the ensembles condition) for Experiment 1, and
142 participants (71 in each condition) for Experiment 2. The me-
dian completion time was approximately 13 mins for Experiment 1
and 11.5 mins for Experiment 2, corresponding to an average wage
of $14/hr and $15.5/hr, excluding bonuses.

4.2 Model specification
When asked to make decisions and judgements based on prob-
ability, participants in such studies often provide imperfect
responses due to “some distortion of judgement or misperception
of probabilities” [65]. According to Zhang and Maloney [67], a
linear-in-log-odds (llo) model can be a good fit to account for
distortions or misperceptions in probability judgements. We
therefore translate equations 2 and 3 into log-odds and apply a
linear transformation to derive a model of participants’ decisions:

From       :2

From       :3

5

4

logit(𝑝) ≥ logit(0.2)
𝛼 + 𝛽 · [logit(𝑝) − logit(0.2)] ≥ 0

logit(𝛾𝑝+ + (1 − 𝛾)𝑝−) ≥ logit(0.2)
logit(𝛾𝑝+ + (1 − 𝛾)𝑝−) − logit(0.2) ≥ 0

𝛼 + 𝛽 · [logit(𝛾𝑝+ + (1 − 𝛾)𝑝−) − logit(0.2)] ≥ 0

We use the model formula derived above in 4 and 5 to imple-
ment a Bayesian Hierarchical linear-in-log-odds regression model.
The full model formula can be specified as follows:

https://osf.io/4yu2h/?view_only=f6c7b8ac2fef4738b28439aa9cdbc2b9
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line 1

line 2

line 3

line 4

line 5

line 6

line 7

line 8

line 9

intercept slope probability of freezing

p+: upper 
bound 
probability 
of freezing

p_: lower 
bound 
probability 
of freezing

decision ∼ Binomial(𝑝send)

logit(𝑝send) =

{
𝛼𝑖 + 𝛽𝑖 · [logit(𝑝) − logit(0.2)] for block 1

𝛼𝑖 + 𝛽𝑖 · [logit(𝛾𝑖𝑝+ + (1 − 𝛾𝑖 )𝑝−) − logit(0.2)] otherwise

𝛼𝑖 = 𝛼 + 𝛿𝛼,𝑖

𝛽𝑖 = 𝛽 + 𝛿𝛽,𝑖[
𝛿𝛼,𝑖
𝛿𝛽,𝑖

]
∼ MVNormal

( [
0
0

]
, Σ

)
logit(𝛾𝑖 ) = 𝜔𝑟 + 𝛿𝜔,𝑖

𝛿𝜔,𝑖 ∼ Normal(0, 𝜎)
𝑟 ∈ {1...𝑅} (𝑅 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠)
𝑖 ∈ {1...𝑁 } (𝑁 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠)

Line 1: The binary decision made by a participant in each trial is
modeled as a Binomial distribution with probability 𝑝send, where
1 represents the decision to send blankets and 0 represents the
decision to not send blankets.
Line 2: In the single forecast scenario, we assume that participants’
decisions would be a function of the temperature forecast distri-
bution shown, which can be represented using the mean of the
distribution. In the multiple-forecast scenario, we assume that par-
ticipants would be making their decision based on some distribution
contained within the bounds of the set of forecasts; we identify this
distribution using: 𝛾𝑝+ + (1 − 𝛾)𝑝− , where 𝛾 ∈ [0, 1] represents an
optimism index parameter, and 𝑝+ and 𝑝− represent the upper and
lower bounds of the probability of freezing in the set of forecasts.
Lines 3-5: We expect the intercept (𝛼 [𝑖 ] ) and the slope (𝛽 [𝑖 ] ) pa-
rameters to vary between participants, as different participants will
likely have different decision-making capacities. 𝛼 and 𝛽 are the
slope parameters for the average participant (𝛿𝛼,𝑖 = 0; 𝛿𝛽,𝑖 = 0),
whereas 𝛿𝛼,𝑖 and 𝛿𝛽,𝑖 capture differences between each participants’
intercepts and slopes compared to the average participant, as ran-
dom effects.
Line 6: The optimism factor, 𝛾 , may also vary for different represen-
tations as well as for different participants. Because it is bounded
( [0, 1]), we use a logit transformation.
Priors: As can be seen from Figure 4, perfectly unbiased responses
would yield values of 𝛼 [𝑖 ] = 0 and 𝛽 [𝑖 ] = 1. We thus use priors
centered on these values but which also permit the possibility of
significant distortion: 𝛼 ∼ Normal(0, 1) and 𝛽 ∼ Normal(1, 1). We
use zero-centered priors for the random effects parameters (𝛿𝛼,𝑖 and
𝛿𝛽,𝑖 ). We assume𝛾 to be centered at 0.5. The prior on the average𝛾 is
determined by 𝜔𝑟 in logit space ( line 6 ), where 0.5 corresponds
to 0, so we use the prior 𝜔𝑟 ∼ Normal(0, 1), which is centered at
0.5 in the inverse-logit space but permits values of 𝛾 very close to
zero or one.
Implementation: We implemented these models in R 4.4.0 [44]
and CmdStanR 0.8.0 [15]. The model ran four chains with 4,000
warmup samples and 4,000 post-warmup samples each, thinned by
4 for a final total sample size of 4,000. We assessed convergence
using the Gelman-Rubin diagnostic (𝑅 = 1.00 for all population-level

parameters, correlations and standard deviations) and the (bulk and
tail) effective sample sizes (ESS𝑚𝑖𝑛 ≈ 3, 000).

4.3 Model Validation
Our Bayesian model is admittedly complex. Given this complexity,
it is important to make sure that the model is: (1) calibrated, and (2)
is able to estimate a posterior distribution which is close approxima-
tion of the observed data. We use simulation-based calibration and
posterior retrodictive checks respectively to validate our Bayesian
model.
Simulation-Based Calibration (SBC) is a procedure which “iden-
tifies inaccurate computation and inconsistencies in model im-
plementations.” [62]. In our model (§4.2), the primary source of
complexity stems from the need to accurately estimate, and dis-
tinguish between the values of, the 𝛼 , 𝛽 and 𝛾 parameters in 3-5 .
For instance, consider the scenario where 𝛼 < 0 and 𝛾 ∈ (0, 0.5)—
parameter values which are plausible given our prior distributions.
These values would mean that the average participant both per-
ceives the optimal crossover point to be greater than 0.2 and weighs
the lower bound of the forecasts more. The SBC procedure allows
us to validate that our implemented model is able to recover the
underlying structure of this data-generating process and correctly
estimate the parameters in all scenarios permitted by our priors.
Using SBC, we repeatedly simulate parameters from the prior dis-
tribution, then simulate datasets using the simulated parameter
values. For each simulated dataset, we fit our model, obtaining
draws (say 𝑀) from the posterior. We calculate the rank of the
simulated parameter values with respect to the 𝑀 posterior draws.
By construction, if a Bayesian model is calibrated, the rank statis-
tics of simulated parameter values should be uniform [8, 35, 62].
Our SBC checks do not reveal any potential issues, suggesting our
model is able to accurately recover the 𝛼 , 𝛽 , and 𝛾 parameters (see
supplement ▶ R ▶ 05-validation.Rmd).
Posterior Predictive/Retrodictive Checks While SBC can high-
light potential issues with the model implementation, it does not tell
us if our model is a good fit for the observed data. We use posterior
retrodictive checks—using the posterior predictive distribution from
our estimated model, we retrodict existing participant responses

https://osf.io/4yu2h/?view_only=f6c7b8ac2fef4738b28439aa9cdbc2b9
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Figure 4: Examples of different possible linear-in-logit models for different values of the intercept (𝛼) and slope (𝛽) parameters.
Figure adapted from Yang et al. [65].

[4] and compare them to the participant response averages. Our
posterior retrodictive checks do not show any signs of consistent
model bias and indicate a good model fit (see supplement ▶ R ▶
05-validation.Rmd).

4.4 Qualitative Analysis
As per our preregistration, we conducted an exploratory qualitative
analysis of participants’ self-reported strategies. We primarily used
their response to the open-text question, as we found participants’
responses to the multiple-choice question (where they were asked
to indicate which forecast they primarily used for making their de-
cisions) were sometimes inconsistent with their textual explanation
and we were interested in the strategy they used rather than only
which line they looked at.4 We used participants’ multiple-choice
responses only in the cases where the response helped resolve some
confusion in our interpretation of their response.5

We used a hybrid coding approach—using our knowledge of
possible strategies as well as participants’ responses—to develop a
set of codes. We coded participants’ primary and supplementary
strategies, focusing on the aspect(s) of the visualisation (usually
which distribution(s)) they used to make their decision. We also
noted the decision point participants’ used—the optimal decision
point would be 0.2 (§3), but participants listed a wide range of
decision points. If participants listed a range of values as their
decision point (e.g. “Once the risk got above 25–30% I felt it was
worth buying the blankets”), we used the lower bound (0.25 in this
example). Some people did not explicitly state the crossover point
for their decisions, but we were able to infer a lower bound based
on an example they provided (e.g., “I look at the graph above and
see that at most you have a 30% need for blankets [...] so I wouldn’t
send blankets on this one”, which suggested that their crossover
point was at least 0.3).

We also noted whether each participant had any misunderstand-
ings about the task, and whether they expressed a risk-seeking or
risk-averse bias, or explicitly mentioned wanting to do well on the

4e.g., one participant listed the lower bound as their multiple choice response but
stated that they were “generally looking at [the median/average curve] as most of
the graphs overlapped there”, and that “for this specific graph, [they were] looking at
[lower bound] for worst case scenario”. We therefore coded their primary strategy as
using the majority of the lines.
5e.g., one participant said “if the graph showed anywhere higher than 55%-ish then
[they] decided to send blankets just to be safe”, and their multiple choice response was
the lower bound curve, confirming that they were referring to the lower bound when
saying “anywhere higher”.

task due to their empathy for the alpacas. We discuss these addi-
tional codes in the discussion section. The second author acted as
the initial coder and performed open coding to generate initial codes.
Both coders discussed the codebook and reached an initial consen-
sus, then both independently coded all responses. All disagreements
were discussed until a consensus set of labels was reached. The full
codebook is available in supplement ▶ qualitative-analysis ▶
qualitative-analysis.xlsx.

4.5 Experiment Details For Experiment 3
The primary difference between Experiment 3 and the previous
experiments was that instead of manipulating the uncertainty rep-
resentation, we used the same representation (ensembles) and only
manipulated the phrasing used to describe the forecasters (reliable
or equally reliable) between subjects. We kept every other detail
regarding the design of the experiment consistent. For our analysis,
the only change was in line 8 where instead of different rep-
resentations, we had different phrasings as the between-subjects
manipulation. As per our preregistration, we recruited 99 partic-
ipants (49 in the reliable condition and 50 in the equally reliable
condition). The median completion time was approximately 9 mins,
corresponding to an average wage of $20/hr, excluding bonuses.

5 Results
5.1 Experiment 1
The results of Experiment 1 (Figure 5C-D) show that the values
of 𝛾 are 0.23 (95% CI: [0.16, 0.29]) and 0.26 (95% CI: [0.18, 0.32])
for p-boxes and ensembles respectively, suggesting a small, but
practically negligible difference (-0.02; 95% CI: [-0.12, 0.07])) in
the optimism parameter between the two visualisation conditions.
This means that both p-boxes and ensembles led to similarly cau-
tious, uncertainty-averse, decision-making, which weighs the lower
bound (worst-case forecast) more than the upper bound (best-case
forecast). We estimate the decision-making reference distribution—
the approximate distribution that participants are using to make
their decisions if they are employing some form of weighting of
the forecasts. Figure 5D shows that this decision-making refer-
ence distribution is virtually indistinguishable between p-boxes
and ensembles.

Additionally, the estimates of the 𝛼 (-1.62; 95% CI: [-1.96, -1.30])
and 𝛽 (2.86; 95% CI: [2.55, 3.20]) parameters suggests that partici-
pants exhibit some degree of bias in their responses (Figure 5A). The
estimated crossover point—the point at which a participant should

https://osf.io/4yu2h/?view_only=f6c7b8ac2fef4738b28439aa9cdbc2b9
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Figure 5: The main result of Experiment 1. We present the posterior probability estimates of the 𝛼 and 𝛽 parameters (A), and
the 𝛾 parameter for the two conditions (C); the median and 95% credible interval of the estimated linear relationship based on
joint distribution of 𝛼 and 𝛽 (B), and the estimated decision-making reference distribution (D).

have no preference between the two choices—is when the forecasted
probability of freezing is 0.31 (95% CI: [0.28, 0.33]), which is greater
than the optimal crossover point of 0.2 (Figure 5B). This might indi-
cate that participants may be misidentifying the optimal crossover
point. These parameter estimates are consistent with Yang et al.
[65], where participants exhibit a bias in the same direction in both
conditions, and Padilla et al. [40], where participants exhibit a bias
in the same direction in 2/4 conditions. The analysis for Experiment
1 can be found in supplement ▶ R ▶ 04-analysis.Rmd.

In our qualitative analysis of participants’ self-reported strategies
in the p-box condition, 32 participants reported primarily using
the lower bound forecast to make their decision, as evidenced by
statements like: “I used [the lower bound forecast] mostly because
it’s better to be safe than sorry when dealing with alpacas.” We
determined that 13 participants used the median or average forecast,
as suggested by statements such as “instead of using the highest
degree or the lowest degree, I used an average of the two and used
as much of the middle of both as I could figure”. Six participants
used the area of some part of the p-box to make their decision (e.g.,
“I’m looking at the shaded area below 32 if it’s approximately at
least 25% of the shaded part I send blankets”) and five participants
used the upper bound (e.g., “If the bottom line was below 10% then I
wasn’t sending the blankets”). In addition, 1 participant in the pbox
condition used the range in the probability of freezing, provided by
the two bounds.

In the ensembles condition, 23 participants used the median or
average, 20 participants used the lower bound, and 1 used the upper
bound. In addition, ten participants described using the majority of
forecasts to make their decision (e.g. “I just decided if the bulk of the
forecasts were 30 percent or lower I would not send blankets”) and
eight participants used the range make their decision (e.g. “If there

was a big gap for example, the lowest was 10% and the highest
was 70% id say yes the alpacas need blankets”). The remaining
participants (23 in the ensembles condition and 21 in the p-box
condition) gave responses that were unclear in terms of determining
which aspect of the visualisation they were using to make their
decision or explicitly stated that they had no strategy or were
guessing.

When we were able to deduce a crossover point (41 responses
in ensembles and 42 responses in p-box), we found that most par-
ticipants did not use the rational crossover point of 0.2. In the
ensembles condition, 12 participants used 0.2 as their crossover
point, while 28 participants used a value above 0.2 and 1 participant
used a value below 0.2. In the p-box condition, only 5 participants
used 0.2 as their crossover point, 33 participants used a value above
0.2, and 4 participants used a value below 0.2 (see supplement
▶ qualitative-analysis ▶ qualitative-analysis.xlsx for a
complete breakdown).

5.2 Experiment 2
As a few participants reported using the majority of forecasts to
make their decisions, we decided to look at whether how forecasts
are distributed could impact participants’ decision-making strate-
gies using ensemble representations. The results of Experiment 2
show the estimates for the 𝛼 (-1.83; 95% CI: [-2.19, -1.51]) and 𝛽

(2.93, 95% CI: [2.62, 3.26]) parameters are very similar to the esti-
mates for Experiment 1 (see supplement ▶ R ▶ 04-analysis.Rmd
for details). Further, in the ensembles skewed right condition, the
estimated value 𝛾 was 0.14 (95% CI: [0.08, 0.22]), suggesting that
participants in the ensembles skewed right condition likely almost
exclusively use the lower bound of the forecasts to make their
decisions (Figure 6). On the other hand, the estimate of 𝛾 is both

https://osf.io/4yu2h/?view_only=f6c7b8ac2fef4738b28439aa9cdbc2b9
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Figure 6: The main result of Experiment 2. We present the posterior probability estimates of the optimism parameter 𝛾 for the
two conditions (left), and the estimated decision-making reference distribution (right).

much larger in magnitude, and somewhat less precise (0.64; 95% CI:
[0.55, 0.71]) for participants in the ensembles skewed left condition
(Figure 6).

This slightly greater variance in the estimate of 𝛾 in the en-
sembles skewed left condition is likely attributable to participants
adopting a wider range of strategies (which correspond to differ-
ent values of 𝛾 ). Following Vuore et al. [63], we use our model
to calculate the proportion of participants in each condition who
are estimated to be above or below a certain threshold for 𝛾 . Our
model estimates the mean value of 𝛾 to be less than 0.2 for approx-
imately 78.9% (95% CI: [64.8%, 90.1%]) of the participants in the
ensembles skewed right condition. Conversely, the model estimates
the mean value of 𝛾 to be greater than 0.8 for approximately 39.4%
(95% CI: [29.6%, 50.7%]) of the participants, and estimates 𝛾 to be
less than 0.5 for approximately 31% (95% CI: [21.1%, 39.4%] of the
participants in the ensembles skewed left condition. To put these
values into context, if participants adopted the averaging strategy,
after dismissing the best-case forecast—the forecast which predicts
the lowest probability of freezing—in the ensembles skewed right
condition (or, the worst-case forecast in the ensembles skewed left
condition), the values of𝛾 would be 0.17 (or 0.85). This suggests that
most participants in the ensembles skewed right condition are most
likely not taking the best-case forecast into account, and a large
proportion of participants in the ensembles skewed left condition
are likely not taking the worst-case forecast into account.

In our qualitative analysis, we found that most participants made
their decision based on the part of the visualisation containing the
most forecasts, either by using the median/average (18 participants
in ensembles skewed right and 17 participants in ensembles skewed
left) or by using the majority/consensus forecast (23 participants in
ensembles skewed right and 23 participants in ensembles skewed
left). In the ensembles skewed right condition, 11 participants re-
ported using the lower bound and 2 participants used the upper
bound as their primary strategy. In the ensembles skewed left con-
dition, 8 participants reported using the lower bound and 4 partici-
pants reported using the upper bound. Of the responses from which
we were able to deduce a crossover point (39 in ensembles skewed
right and 34 in ensembles skewed left), only a few participants

used the optimal crossover point of 20% (5 in ensembles skewed
right and 4 in ensembles skewed left). In contrast, the majority of
participants (28 in ensembles skewed right and 24 in ensembles
skewed left) used some crossover point greater than 20%, while
some participants (6 in ensembles skewed right and 6 in ensembles
skewed left) chose a crossover point below 20%.

5.3 Experiment 3
We conducted Experiment 3 as a robustness check to ensure that
the accidental difference in phrasing (“reliable” vs “equally reliable”)
between the p-box and ensembles conditions in Experiment 1 did
not impact those results. The difference in the estimate of 𝛾 param-
eter between the two phrasings in Experiment 3 was 0.002 (95% CI:
[-0.13, 0.14]) indicating that the phrasing has little-to-no impact
on participants responses. In addition, we found the estimate for
the 𝛽 (2.23, 95% CI: [1.93, 2.56]) parameter to be relatively similar
to those of the previous two experiments; the estimate of 𝛼 (-0.90;
95% CI: [-1.24, -0.57]) suggests that the average participant might
be somewhat less biased compared to the previous experiments.
The results of this analysis can be found in supplement ▶ R ▶
04-analysis.Rmd.

6 Discussion
6.1 How Do People Interpret Visualisations of

Multiple Forecasts?
Our work investigated whether how multiple forecasts are visu-
alised impacts the strategies that the decision-makers adopt. Prior
work [22, 49] has argued that ensembles may be more likely to
lead to viewers failing to distinguish between the two types of
uncertainty, and treating each forecast to be equally likely. Thus,
we expected participants to primarily use an averaging approach
(𝛾 ≈ 0.5) to decision-making when forecasts were presented using
ensembles. Conversely, p-boxes were proposed as a representation
for more accurately communicating (whilst also distinguishing be-
tween) probabilistic uncertainty and incertitude simultaneously.
As p-boxes only present the bounds of incertitude, we expected
participants in our experiment to make decisions largely based on

https://osf.io/4yu2h/?view_only=f6c7b8ac2fef4738b28439aa9cdbc2b9
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one of these bounds (i.e., 𝛾 ≈ 0 or 𝛾 ≈ 1); further, assuming that
most people are uncertainty-averse, we expected more participants
to make decisions based on the lower bound than the upper bound.

Contrary to our expectations, the results of Experiment 1 found
that, for uniformly distributed forecasts, the type of visualisation
seems to have little difference in participants’ decision-making
strategies (Figure 5C-D). We found that p-boxes and ensembles
were equally likely to lead to decisions which place a much greater
weight on the lower bound than the upper bound of the forecasts,
and our qualitative analysis of participants’ self-reported strategies
corroborated this finding. However, the results of Experiment 2
suggest that how the forecasts are distributed can impact participants’
decision-making strategies in the case of ensembles (which would
obviously not occur in the case of p-boxes as the visualisation would
be unaffected by the distribution of forecasts as long as the lower
and upper bounds remain unchanged). Specifically, we found that
if a majority of the forecasts either clustered close to the lower or
upper bound, participants likely made decisions based on the cluster
of forecasts (Figure 6), but placed some weight on the worst-case
scenario (which was only relevant in ensembles skewed right).

Our results on ensembles are not too dissimilar from those of
Padilla et al. [38]. In their study [38], participants, when shown mul-
tiple forecasts as ensembles, predicted a trend which was roughly
somewhere between the median and the worst-case forecasts on
average. The results from our quantitative analysis are also sup-
ported by some of our qualitative responses. In Experiment 1, more
participants in the ensembles condition reported making a deci-
sion based on the average or majority/consensus forecasts (33 in
ensembles vs 13 in p-boxes); similarly, the participants in Exper-
iment 2 also mostly made their decision based on the average or
majority/consensus forecasts.

Our results can help designers make more informed choices re-
garding which representation to use. If a designer wants a decision-
maker to make decisions which are not influenced by how the
forecasts are distributed, p-boxes might be the better design choice.
If p-boxes are used, the designer can expect the decision-maker to
place greater weight on the worst-case forecast; however, the typi-
cal participant will likely incorporate additional factors besides the
worst-case forecast into their decision. While our results suggests
that the use of ensembles leads to decision-makers adopting similar
strategies if the set of forecasts are approximately uniformly dis-
tributed, there is the possibility that there may be more variance in
the decision-making strategies that viewers adopt when presented
with ensembles as it surfaces more information. On the other hand,
if a designer wants decisions to be made based on the average or
median forecast, and the forecasts are clustered around the median
or average forecast, they could possibly use ensembles. While none
of the approaches evaluated in this study for representing multiple
forecasts will likely lead to the typical participant making deci-
sions solely based on the average or median forecasts, we believe
that highlighting or other approaches of emphasising the median
forecast in an ensemble representation could potentially be more
effective in eliciting the desired average-based decision-making
strategy. This problem requires more design exploration, which we
hope to explore in future work.

6.2 Transparency, Expressiveness and
Effectiveness

Ensemble representations are more transparent and expressive [36]
compared to p-boxes. In fact, one of the arguments put forth in
favor of p-boxes is that by being less expressive, they suppress
potentially unnecessary information (the individual forecasts) and
draw the viewers’ attention to the information which a designer
might consider more relevant for decision-making under ambiguity
(the bounds). Moreover, it could be argued that p-boxes may be a
more effective representation than ensembles in certain scenarios
where the lower bound is important and there may be a clustering
of forecasts. On the other hand, we do not know if p-boxes would be
considered less trustworthy than ensembles by participants due to
being less transparent. This highlights a potential trade-off between
the expressiveness and effectiveness of these representations.

We can push this notion of reducing expressiveness even further
to create visual representations which show only the lower bound
(or some other aggregate of the forecasts which the designer con-
siders to be most relevant to the decision maker). Alternatively, a
designer might create a visualisation that strikes a balance between
ensembles and p-boxes, perhaps by making the individual forecasts
less visually salient compared to the bounds. Based on the results of
our current study, the consequences of such design choices remain
unclear and would require further investigation.

6.3 Potential Applications to Communicating
Multiverse Analysis

In multiverse analyses [58], every reasonable analysis for a given
dataset and research question is implemented. Multiverse analy-
ses surface the uncertainty in a result due to both the statistical
variability in the modeling process as well as due to arbitrary—but
justifiable—choices that researchers typically make in a data analy-
sis process (which is referred to as possibilistic uncertainty [22, 49]).
Communicating the results of a multiverse analysis [22, 31, 49, 50]
represents one scenario where a viewer should be able to distinguish
between probabilistic uncertainty and possibilistic uncertainty (i.e.,
incertitude). Prior work [49] has used a variant of the p-box—a rep-
resentation constructed using the upper and lower bounds of con-
sonance curves [1, 5, 42, 45, 56, 61, 64] instead of CDFs—predicated
on the argument that this representation could more likely lead to
the desired possibilistic interpretation.

A possibilistic interpretation of a multiverse result means that
any conclusions should be based on which results are possible. For
instance, if the goal is to determine whether a treatment effect is
positive or not (e.g., a one-tailed t-test), then there are two possibilis-
tic interpretations of the result—if the lower bound of the estimates
does not overlap zero at a specific confidence level, one can con-
clude that the treatment is definitely positive at that confidence
level; if only the upper bound of the estimates does not overlap zero,
one can conclude that the treatment’s effect is possibly positive at
that confidence level. These two interpretations map onto the max-
imin and maximax decision rules outlined in §3. However, drawing
conclusions based on the latter interpretation is likely unwise, as
it will inflate already existing concerns of potential false positive
findings in scientific studies.
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Thus, the challenge of any visual representation lies in ensuring
that the reader of a multiverse analysis interprets the uncertainty
due to choices in the analysis process in the desired possibilistic
sense. Additionally, we want to avoid letting them fall into the
trap of an incorrect probabilistic interpretation—considering each
individual analysis as equally likely [22, 49] and adopting the prin-
ciple of indifference for drawing conclusions about the overall result.
Our results suggest that p-boxes are likely a better-suited, but still
imperfect, candidate for communication in this context. P-boxes
will likely lead to somewhat conservative decisions and are less
sensitive to how the individual distributions are distributed. How-
ever, p-boxes, without additional training or instructions, would
likely lead to viewers performing some form of weighting between
the upper and lower bound of the distributions instead of making
decisions based only on the lower bound.

6.4 Expression of Concern for Alpacas Not
Reflected in Decisions

Across the two experiments, at least 23 participants reported that
they were cautious in their decisions because they did not want
alpacas to die, compared to only one participant who reported being
cautious because they wanted a bonus. In fact, one participant said
“I’d rather keep the alpacas alive than receive a bonus” and another
said “I value life and suffering of animals over money”, implying
that they would act even more cautiously than the rational decision
point.6

This outpouring of concern for the alpacas—or even broader
examples of risk and uncertainty-averse behaviour—were, however,
not always reflected in people’s actual decisions. For instance, one
participant stated that “I always chose the most conservative and
safe choice. So if the percentage of likelihood that the temp fell
below 32 was about 40% or higher, then I would send it”, implying
that a crossover point of 0.4 is conservative. However, the crossover
point would need to be below 0.2 to be more conservative than is
rational. Similarly, another participant reported: “if the chance was
significant of 32° or below weather (30% or higher) I would send
blankets. I did not want alpacas to die and to lose 5000 dollars.” In
fact, based on the qualitative responses, the crossover point was
greater than the optimal (of 0.2) for 70% of the participants for
whom we could deduce a crossover point, which is also reflected
in the model estimates (see Figure 5). While we do not have any
suggestions on how to address this issue, we found the disconnect
between what participants reported they were doing and what
they actually did quite interesting. It is possible that participants
may be less sensitive to incentives in such tasks than previously
anticipated [6], even with both a monetary and emotional incentive;
recent work has called for such theories to be tested in hci and
visualisation [51].

6.5 Limitations
Our study methodology has other limitations in addition to po-
tential issues with incentives discussed above. We used an online
6Our favorite response was from a pilot participant, who said “I don’t want to kill any
alpacas because I’m not a psychopath. [...] If the overall average (visually) was over
40ish percent I gave those stinky creatures blankets. To be honest, bonuses are usually
a sham but the thought of killing creatures made me want to do good things in virtual
survey alpaca world.”

survey, which allowed us to collect data from a large number of
participants and make inferences about the impact of visual repre-
sentations on average. Participant responses in surveys may involve
guessing, and self-reported data may introduce additional noise.
This may have driven some of the inconsistencies between par-
ticipants’ multiple choice responses (where they indicated which
forecast they primarily used to make decisions) and their textual
explanations of the strategy they used to perform the task.

In our study, participants only performed a binary decision-
making task—whether the temperature was going to be below
freezing based on one or multiple forecasts. However, in reality,
decision-making can be more complex and may involve choosing
between three or more alternatives—e.g., the decision to bet on a
soccer game would involve three possible outcomes (team A wins,
team B wins or the game ends in a draw)—or may not even be
possible to be distilled into discrete choices. We hope to explore the
impact of representations on more complex decision-making tasks
in future work.

7 Conclusion
In this paper, we wanted to understand how people make decisions
when faced with multiple forecasts distributions regarding an event.
We conducted two experiments where we compared: (1) p-boxes
and uniformly distributed ensembles; and (2) ensembles where a
majority of the forecasts are clustered close to the upper or lower
bound. In addition, we conducted a third experiment as a robust-
ness check. We found that, for the average participant, multiple
forecasts represented as p-boxes and ensembles will likely lead to
similar decisions where greater weight is placed on the worst-case
forecast. However, in the case of ensemble representations, we also
found that participants’ decisions will be likely sensitive to how
the individual forecasts are distributed. Our findings suggests that
designers of multiple forecast visualisations who wish their users
to adopt particular normative strategies for decision-making under
epistemic uncertainty must carefully consider the strategies their
visualisation designs may induce in their users.
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