The correct interpretation of a multiverse analysis can be difficult due to their potential size and the complexity of correctly interpreting their uncertainty. Our recent work in developing Milliways, an interactive visualisation interface for the principled evaluation and interpretation of the results of multiverse analysis aims to address this problem. For more details, please refer to our paper.
To visualise the results of a multiverse analysis using Milliways, the user needs to provide four files:
results
: a JSON file which contains the estimates from
each universe in the multiverse analysis.code
: a JSON file which contains the code used to
generate the multiverse object.data
: a JSON file which contains the dataset used in
the multiverse analysis.analysis
: an HTML file which contains the entire
analysis as an Explorable Multiverse Analysis Report (EMAR).In this document, I outline how to generate each of these files for
the multiverse analysis on the Durante dataset (see
vignette("visualising-multiverse")
). Compiling this
document will, by itself, result in the creation of the EMAR, provided
the following function is declared.
Note #1: If compiling the document as an EMAR, each code chunk will
execute automatically. You do not need to call
execute_multiverse()
to obtain the results unless you want
to extract the results and access it from an R code chunk.
Note #2: If you are not compiling the document as an EMAR, the code
chunks will not execute automatically. The only way to obtain the
results is to first execute all the universes in the multiverse using
execute_multiverse()
and then accessing the results using
an R code chunk.
Note #3: On the use of magrittr pipes (%>%
) instead
of the native R pipe (|>
). Because
multiverse
rewrites R expressions, when I parse the code
declared into individual R scripts, the native R pipe is “evaluated”
(i.e. df |> mutate(...) |> filter(...)
becomes
filter(mutate(df, ...), ...)
); this makes the code
readable. Instead I use magrittr pipes which does not “evaluate” the R
expressions.
knit_as_emar()
The analysis follows the same steps outlined in
vignette("example-durante")
. The first step is to read the
raw data from the file and store it as a tibble.
data("durante")
data.raw.study2 <- durante %>%
mutate(
Abortion = abs(7 - Abortion) + 1,
StemCell = abs(7 - StemCell) + 1,
Marijuana = abs(7 - Marijuana) + 1,
RichTax = abs(7 - RichTax) + 1,
StLiving = abs(7 - StLiving) + 1,
Profit = abs(7 - Profit) + 1,
FiscConsComp = FreeMarket + PrivSocialSec + RichTax + StLiving + Profit,
SocConsComp = Marriage + RestrictAbortion + Abortion + StemCell + Marijuana
)
M = multiverse()
In their Durante et al. exclude participants based on the length of their menstrual cycle, and only include those whose cycle lengths are between 25 and 35 days. However, according to Steegen et al., due to the flexibility in the data collection, “this exclusion criterion can be instantiated in two reasonable ways, using either a woman’s computed cycle length or a woman’s self-reported typical cycle length.”
Note: we can define a tangle widget to allow the user to switch
between which operationalisation of the outlier exclusion criteria is
used using the syntax <mv param="cycle_length"/>
.
Here, cycle_length
can be replaced with the name of any
parameter. In the EMAR document, you can see and interact with the
tangle widget.
df <- data.raw.study2 %>%
mutate(ComputedCycleLength = StartDateofLastPeriod - StartDateofPeriodBeforeLast) %>%
filter(TRUE)
df <- data.raw.study2 %>%
mutate(ComputedCycleLength = StartDateofLastPeriod - StartDateofPeriodBeforeLast) %>%
filter(ComputedCycleLength > 25 & ComputedCycleLength < 35)
df <- data.raw.study2 %>%
mutate(ComputedCycleLength = StartDateofLastPeriod - StartDateofPeriodBeforeLast) %>%
filter(ReportedCycleLength > 25 & ReportedCycleLength < 35)
Steegen et al. describe that how certain the participants are in their reported dates can be another justifiable exclusion criteria:
df <- df %>%
filter(TRUE)
df <- df %>%
filter(Sure1 > 6 | Sure2 > 6)
df <- df %>%
filter(TRUE)
df <- df %>%
filter(Sure1 > 6 | Sure2 > 6)
df <- df %>%
filter(TRUE)
df <- df %>%
filter(Sure1 > 6 | Sure2 > 6)
The flexibility in how the data is collected also allows three reasonable alternatives for estimating a woman’s next menstrual onset, which is an intermediate step in determining cycle day.
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
Durante et al. classify women into a high or low fertility group based on cycle day, but this classification can be done in various different reasonable ways:
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 14, "high", "low")))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 8 & CycleDay <= 17, "high", "low")))
The participants in the study described their relationship status as one of the following options: (1) not dating/romantically involved with anyone, (2) dating or involved with only one partner, (3) engaged or living with my partner, and (4) married. This allows various different ways of classifying whether a participants is in a relationship or not:
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3) / 3, 2))
The authors perform an ANOVA to study the effect of
Fertility, Relationship and their interaction term, on
the composite Religiosity score. We fit the linear model using the call:
lm( RelComp ~ Fertility * RelationshipStatus, data = df )
inside our multiverse and save the result to a variable called
fit_RelComp
.
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.37 0.405 15.8 4.02e-41 5.58 7.17
2 Fertilitylow -1.16 0.534 -2.18 3.02e- 2 -2.21 -0.112
3 RelationshipStatusSi… -1.51 0.538 -2.80 5.38e- 3 -2.57 -0.450
4 Fertilitylow:Relatio… 2.05 0.714 2.87 4.46e- 3 0.640 3.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.78 0.322 18.0 1.86e-49 5.15 6.42
2 Fertilitylow -0.583 0.428 -1.36 1.74e- 1 -1.42 0.259
3 RelationshipStatusSi… -0.859 0.583 -1.47 1.41e- 1 -2.01 0.287
4 Fertilitylow:Relatio… 1.85 0.772 2.40 1.71e- 2 0.332 3.37
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.37 0.402 15.8 2.17e-38 5.58 7.17
2 Fertilitylow -1.16 0.531 -2.19 2.95e- 2 -2.21 -0.117
3 RelationshipStatusSi… -1.45 0.626 -2.31 2.16e- 2 -2.68 -0.215
4 Fertilitylow:Relatio… 2.43 0.828 2.94 3.67e- 3 0.800 4.07
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.376 17.0 7.76e-48 5.66 7.13
2 Fertilitylow -1.14 0.492 -2.31 2.13e- 2 -2.11 -0.170
3 RelationshipStatusSi… -1.70 0.493 -3.44 6.63e- 4 -2.67 -0.725
4 Fertilitylow:Relatio… 2.28 0.653 3.49 5.49e- 4 0.993 3.56
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.63 0.295 19.1 2.43e-56 5.05 6.21
2 Fertilitylow -0.325 0.391 -0.830 4.07e- 1 -1.09 0.445
3 RelationshipStatusSi… -0.722 0.536 -1.35 1.78e- 1 -1.78 0.331
4 Fertilitylow:Relatio… 1.63 0.712 2.29 2.27e- 2 0.230 3.03
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.371 17.2 6.75e-45 5.66 7.13
2 Fertilitylow -1.14 0.486 -2.34 1.99e- 2 -2.10 -0.182
3 RelationshipStatusSi… -1.49 0.573 -2.60 9.97e- 3 -2.62 -0.359
4 Fertilitylow:Relatio… 2.44 0.757 3.23 1.41e- 3 0.953 3.94
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.352 17.5 3.73e-48 5.48 6.87
2 Fertilitylow -0.871 0.507 -1.72 8.70e- 2 -1.87 0.127
3 RelationshipStatusSi… -1.12 0.497 -2.25 2.49e- 2 -2.10 -0.142
4 Fertilitylow:Relatio… 1.55 0.699 2.22 2.69e- 2 0.179 2.93
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.79 0.289 20.0 1.31e-57 5.22 6.36
2 Fertilitylow -0.551 0.412 -1.34 1.82e- 1 -1.36 0.259
3 RelationshipStatusSi… -0.682 0.566 -1.21 2.29e- 1 -1.80 0.431
4 Fertilitylow:Relatio… 1.69 0.777 2.17 3.08e- 2 0.157 3.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.355 17.4 6.26e-44 5.48 6.87
2 Fertilitylow -0.871 0.510 -1.71 8.94e- 2 -1.88 0.135
3 RelationshipStatusSi… -1.07 0.604 -1.77 7.86e- 2 -2.26 0.123
4 Fertilitylow:Relatio… 2.00 0.836 2.40 1.73e- 2 0.358 3.65
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.58 0.426 15.5 2.78e-44 5.74 7.41
2 Fertilitylow -0.920 0.483 -1.91 5.73e- 2 -1.87 0.0287
3 RelationshipStatusSi… -1.59 0.569 -2.79 5.48e- 3 -2.70 -0.469
4 Fertilitylow:Relatio… 1.54 0.648 2.38 1.76e- 2 0.270 2.82
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.94 0.337 17.6 1.69e-54 5.28 6.61
2 Fertilitylow -0.457 0.383 -1.19 2.33e- 1 -1.21 0.295
3 RelationshipStatusSi… -0.875 0.622 -1.41 1.60e- 1 -2.10 0.347
4 Fertilitylow:Relatio… 1.41 0.713 1.98 4.85e- 2 0.00942 2.81
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.58 0.421 15.6 2.09e-42 5.75 7.40
2 Fertilitylow -0.920 0.478 -1.93 5.50e- 2 -1.86 0.0196
3 RelationshipStatusSi… -1.51 0.666 -2.26 2.42e- 2 -2.82 -0.198
4 Fertilitylow:Relatio… 1.87 0.762 2.46 1.44e- 2 0.375 3.37
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.336 18.5 1.10e-58 5.57 6.89
2 Fertilitylow -0.573 0.420 -1.36 1.73e- 1 -1.40 0.253
3 RelationshipStatusSi… -1.17 0.466 -2.51 1.25e- 2 -2.08 -0.253
4 Fertilitylow:Relatio… 1.17 0.575 2.04 4.20e- 2 0.0424 2.30
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.80 0.275 21.1 4.81e-71 5.26 6.34
2 Fertilitylow -0.318 0.338 -0.940 3.48e- 1 -0.982 0.347
3 RelationshipStatusSi… -0.640 0.519 -1.23 2.18e- 1 -1.66 0.380
4 Fertilitylow:Relatio… 1.28 0.641 2.00 4.65e- 2 0.0202 2.54
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.333 18.7 3.22e-55 5.57 6.88
2 Fertilitylow -0.573 0.416 -1.38 1.69e- 1 -1.39 0.245
3 RelationshipStatusSi… -1.07 0.547 -1.95 5.18e- 2 -2.14 0.00848
4 Fertilitylow:Relatio… 1.53 0.679 2.26 2.46e- 2 0.198 2.87
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.413 15.9 9.65e-40 5.74 7.37
2 Fertilitylow -1.28 0.564 -2.27 2.41e- 2 -2.39 -0.169
3 RelationshipStatusSi… -1.79 0.545 -3.28 1.19e- 3 -2.86 -0.714
4 Fertilitylow:Relatio… 2.26 0.759 2.98 3.15e- 3 0.768 3.76
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.76 0.324 17.8 3.38e-46 5.12 6.40
2 Fertilitylow -0.332 0.453 -0.732 4.65e- 1 -1.22 0.560
3 RelationshipStatusSi… -0.817 0.611 -1.34 1.82e- 1 -2.02 0.385
4 Fertilitylow:Relatio… 1.17 0.856 1.36 1.74e- 1 -0.520 2.85
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.420 15.6 2.41e-35 5.73 7.38
2 Fertilitylow -1.28 0.574 -2.23 2.69e- 2 -2.41 -0.148
3 RelationshipStatusSi… -1.61 0.666 -2.42 1.66e- 2 -2.92 -0.297
4 Fertilitylow:Relatio… 2.11 0.925 2.29 2.34e- 2 0.289 3.94
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.369 17.7 3.42e-48 5.82 7.28
2 Fertilitylow -1.26 0.513 -2.45 1.48e- 2 -2.27 -0.249
3 RelationshipStatusSi… -1.73 0.500 -3.46 6.14e- 4 -2.72 -0.748
4 Fertilitylow:Relatio… 2.16 0.697 3.10 2.15e- 3 0.786 3.53
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.89 0.295 19.9 2.17e-56 5.31 6.47
2 Fertilitylow -0.445 0.412 -1.08 2.81e- 1 -1.25 0.365
3 RelationshipStatusSi… -1.06 0.572 -1.85 6.48e- 2 -2.19 0.0656
4 Fertilitylow:Relatio… 1.35 0.796 1.70 9.05e- 2 -0.215 2.92
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.373 17.5 4.81e-43 5.81 7.28
2 Fertilitylow -1.26 0.518 -2.43 1.60e- 2 -2.28 -0.237
3 RelationshipStatusSi… -1.72 0.614 -2.81 5.49e- 3 -2.94 -0.513
4 Fertilitylow:Relatio… 2.16 0.853 2.54 1.19e- 2 0.483 3.85
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.61 0.385 17.2 9.88e-44 5.85 7.36
2 Fertilitylow -1.39 0.557 -2.50 1.29e- 2 -2.49 -0.297
3 RelationshipStatusSi… -1.38 0.526 -2.63 9.09e- 3 -2.42 -0.347
4 Fertilitylow:Relatio… 1.71 0.763 2.24 2.60e- 2 0.207 3.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.07 0.311 19.5 1.11e-51 5.46 6.69
2 Fertilitylow -0.781 0.453 -1.73 8.56e- 2 -1.67 0.110
3 RelationshipStatusSi… -0.770 0.597 -1.29 1.98e- 1 -1.95 0.405
4 Fertilitylow:Relatio… 1.09 0.860 1.27 2.05e- 1 -0.601 2.79
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.61 0.390 16.9 5.48e-39 5.84 7.38
2 Fertilitylow -1.39 0.564 -2.47 1.45e- 2 -2.51 -0.280
3 RelationshipStatusSi… -1.30 0.643 -2.02 4.45e- 2 -2.57 -0.0325
4 Fertilitylow:Relatio… 1.71 0.926 1.84 6.71e- 2 -0.121 3.53
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.64 0.427 15.6 4.05e-43 5.80 7.48
2 Fertilitylow -0.990 0.497 -1.99 4.72e- 2 -1.97 -0.0122
3 RelationshipStatusSi… -1.90 0.582 -3.27 1.16e- 3 -3.05 -0.759
4 Fertilitylow:Relatio… 1.79 0.677 2.64 8.62e- 3 0.456 3.12
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.91 0.344 17.2 4.49e-50 5.23 6.58
2 Fertilitylow -0.386 0.398 -0.970 3.33e- 1 -1.17 0.396
3 RelationshipStatusSi… -1.05 0.657 -1.61 1.09e- 1 -2.35 0.237
4 Fertilitylow:Relatio… 1.32 0.770 1.72 8.69e- 2 -0.192 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.64 0.422 15.7 1.37e-40 5.81 7.47
2 Fertilitylow -0.990 0.492 -2.01 4.51e- 2 -1.96 -0.0216
3 RelationshipStatusSi… -1.79 0.692 -2.59 1.02e- 2 -3.15 -0.427
4 Fertilitylow:Relatio… 1.93 0.812 2.37 1.84e- 2 0.327 3.52
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.62 0.368 18.0 1.38e-53 5.90 7.34
2 Fertilitylow -1.10 0.459 -2.41 1.66e- 2 -2.01 -0.202
3 RelationshipStatusSi… -1.48 0.506 -2.92 3.69e- 3 -2.47 -0.483
4 Fertilitylow:Relatio… 1.38 0.626 2.21 2.79e- 2 0.150 2.61
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.06 0.298 20.3 1.16e-63 5.47 6.64
2 Fertilitylow -0.661 0.366 -1.81 7.17e- 2 -1.38 0.0585
3 RelationshipStatusSi… -0.793 0.572 -1.39 1.67e- 1 -1.92 0.332
4 Fertilitylow:Relatio… 1.07 0.714 1.50 1.33e- 1 -0.329 2.48
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.62 0.363 18.2 1.01e-49 5.91 7.34
2 Fertilitylow -1.10 0.453 -2.44 1.55e- 2 -2.00 -0.212
3 RelationshipStatusSi… -1.36 0.601 -2.26 2.46e- 2 -2.54 -0.175
4 Fertilitylow:Relatio… 1.52 0.753 2.01 4.48e- 2 0.0351 3.00
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.439 14.1 2.71e-34 5.32 7.05
2 Fertilitylow -1.25 0.563 -2.21 2.78e- 2 -2.35 -0.137
3 RelationshipStatusSi… -1.21 0.574 -2.10 3.63e- 2 -2.34 -0.0774
4 Fertilitylow:Relatio… 2.10 0.752 2.80 5.49e- 3 0.624 3.58
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.52 0.338 16.4 1.66e-42 4.86 6.19
2 Fertilitylow -0.454 0.449 -1.01 3.13e- 1 -1.34 0.430
3 RelationshipStatusSi… -0.161 0.629 -0.256 7.98e- 1 -1.40 1.08
4 Fertilitylow:Relatio… 1.22 0.817 1.49 1.37e- 1 -0.390 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.439 14.1 5.32e-32 5.32 7.05
2 Fertilitylow -1.25 0.564 -2.21 2.82e- 2 -2.36 -0.134
3 RelationshipStatusSi… -0.821 0.687 -1.20 2.33e- 1 -2.17 0.533
4 Fertilitylow:Relatio… 2.01 0.882 2.28 2.37e- 2 0.271 3.75
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.384 16.2 8.68e-44 5.47 6.98
2 Fertilitylow -1.16 0.501 -2.32 2.10e- 2 -2.15 -0.176
3 RelationshipStatusSi… -1.13 0.517 -2.19 2.90e- 2 -2.15 -0.117
4 Fertilitylow:Relatio… 1.85 0.678 2.73 6.73e- 3 0.515 3.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.63 0.306 18.4 3.21e-52 5.02 6.23
2 Fertilitylow -0.520 0.405 -1.28 2.00e- 1 -1.32 0.277
3 RelationshipStatusSi… -0.0844 0.569 -0.148 8.82e- 1 -1.20 1.03
4 Fertilitylow:Relatio… 1.18 0.739 1.59 1.12e- 1 -0.277 2.63
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.380 16.4 2.95e-41 5.48 6.98
2 Fertilitylow -1.16 0.496 -2.34 2.01e- 2 -2.14 -0.184
3 RelationshipStatusSi… -0.684 0.607 -1.13 2.61e- 1 -1.88 0.512
4 Fertilitylow:Relatio… 1.82 0.787 2.31 2.16e- 2 0.269 3.37
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.28 0.405 15.5 2.67e-39 5.48 7.08
2 Fertilitylow -1.42 0.545 -2.61 9.67e- 3 -2.49 -0.347
3 RelationshipStatusSi… -0.806 0.531 -1.52 1.30e- 1 -1.85 0.239
4 Fertilitylow:Relatio… 1.72 0.735 2.34 1.99e- 2 0.274 3.17
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.74 0.308 18.7 1.34e-50 5.13 6.34
2 Fertilitylow -0.707 0.438 -1.61 1.08e- 1 -1.57 0.156
3 RelationshipStatusSi… 0.271 0.593 0.457 6.48e- 1 -0.897 1.44
4 Fertilitylow:Relatio… 0.633 0.804 0.787 4.32e- 1 -0.950 2.22
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.28 0.404 15.5 1.89e-36 5.48 7.08
2 Fertilitylow -1.42 0.544 -2.61 9.70e- 3 -2.49 -0.348
3 RelationshipStatusSi… -0.271 0.646 -0.419 6.76e- 1 -1.54 1.00
4 Fertilitylow:Relatio… 1.35 0.863 1.56 1.20e- 1 -0.355 3.05
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.24 0.457 13.6 6.10e-36 5.34 7.14
2 Fertilitylow -0.549 0.512 -1.07 2.84e- 1 -1.56 0.458
3 RelationshipStatusSi… -1.24 0.600 -2.06 3.98e- 2 -2.42 -0.0576
4 Fertilitylow:Relatio… 1.20 0.679 1.77 7.80e- 2 -0.135 2.53
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.59 0.349 16.0 2.17e-46 4.90 6.27
2 Fertilitylow -0.0614 0.395 -0.155 8.77e- 1 -0.838 0.715
3 RelationshipStatusSi… -0.231 0.664 -0.349 7.27e- 1 -1.54 1.07
4 Fertilitylow:Relatio… 0.771 0.753 1.02 3.06e- 1 -0.709 2.25
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.24 0.454 13.7 1.66e-34 5.35 7.14
2 Fertilitylow -0.549 0.509 -1.08 2.81e- 1 -1.55 0.452
3 RelationshipStatusSi… -0.886 0.721 -1.23 2.20e- 1 -2.30 0.532
4 Fertilitylow:Relatio… 1.26 0.814 1.55 1.23e- 1 -0.343 2.86
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.374 16.7 2.67e-49 5.50 6.97
2 Fertilitylow -0.614 0.448 -1.37 1.71e- 1 -1.50 0.267
3 RelationshipStatusSi… -0.842 0.496 -1.70 9.03e- 2 -1.82 0.133
4 Fertilitylow:Relatio… 0.781 0.602 1.30 1.95e- 1 -0.402 1.96
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.67 0.286 19.8 7.31e-64 5.11 6.23
2 Fertilitylow -0.193 0.350 -0.552 5.81e- 1 -0.880 0.494
3 RelationshipStatusSi… 0.322 0.560 0.575 5.65e- 1 -0.778 1.42
4 Fertilitylow:Relatio… 0.0699 0.677 0.103 9.18e- 1 -1.26 1.40
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.23 0.371 16.8 1.47e-46 5.50 6.96
2 Fertilitylow -0.614 0.445 -1.38 1.68e- 1 -1.49 0.261
3 RelationshipStatusSi… -0.241 0.604 -0.398 6.91e- 1 -1.43 0.948
4 Fertilitylow:Relatio… 0.491 0.726 0.676 4.99e- 1 -0.938 1.92
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.450 14.6 8.40e-35 5.68 7.45
2 Fertilitylow -1.42 0.597 -2.37 1.87e- 2 -2.59 -0.238
3 RelationshipStatusSi… -1.76 0.597 -2.94 3.57e- 3 -2.94 -0.581
4 Fertilitylow:Relatio… 2.38 0.810 2.94 3.61e- 3 0.785 3.98
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.86 0.359 16.3 1.33e-40 5.15 6.57
2 Fertilitylow -0.656 0.482 -1.36 1.75e- 1 -1.61 0.294
3 RelationshipStatusSi… -0.955 0.649 -1.47 1.42e- 1 -2.23 0.323
4 Fertilitylow:Relatio… 1.98 0.904 2.19 2.95e- 2 0.199 3.76
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.451 14.6 5.64e-32 5.67 7.45
2 Fertilitylow -1.42 0.598 -2.36 1.91e- 2 -2.60 -0.234
3 RelationshipStatusSi… -1.66 0.700 -2.37 1.88e- 2 -3.04 -0.279
4 Fertilitylow:Relatio… 2.74 0.965 2.84 5.10e- 3 0.833 4.64
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.413 15.9 4.43e-41 5.75 7.37
2 Fertilitylow -1.38 0.546 -2.52 1.22e- 2 -2.45 -0.303
3 RelationshipStatusSi… -1.88 0.541 -3.48 5.79e- 4 -2.95 -0.819
4 Fertilitylow:Relatio… 2.63 0.736 3.57 4.12e- 4 1.18 4.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.67 0.325 17.5 6.92e-47 5.03 6.31
2 Fertilitylow -0.342 0.438 -0.783 4.34e- 1 -1.20 0.519
3 RelationshipStatusSi… -0.684 0.594 -1.15 2.51e- 1 -1.85 0.486
4 Fertilitylow:Relatio… 1.63 0.832 1.96 5.08e- 2 -0.00559 3.27
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.410 16.0 5.32e-38 5.75 7.37
2 Fertilitylow -1.38 0.542 -2.54 1.17e- 2 -2.45 -0.310
3 RelationshipStatusSi… -1.58 0.635 -2.48 1.38e- 2 -2.83 -0.325
4 Fertilitylow:Relatio… 2.67 0.877 3.04 2.67e- 3 0.938 4.40
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.396 16.2 3.08e-40 5.62 7.18
2 Fertilitylow -1.15 0.574 -2.00 4.72e- 2 -2.28 -0.0145
3 RelationshipStatusSi… -1.32 0.559 -2.36 1.93e- 2 -2.42 -0.216
4 Fertilitylow:Relatio… 1.82 0.808 2.26 2.50e- 2 0.231 3.41
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.89 0.328 18.0 2.95e-46 5.25 6.54
2 Fertilitylow -0.644 0.471 -1.37 1.73e- 1 -1.57 0.285
3 RelationshipStatusSi… -0.569 0.640 -0.889 3.75e- 1 -1.83 0.692
4 Fertilitylow:Relatio… 1.63 0.932 1.75 8.15e- 2 -0.206 3.47
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.400 16.0 2.92e-36 5.61 7.19
2 Fertilitylow -1.15 0.581 -1.97 5.02e- 2 -2.29 0.00125
3 RelationshipStatusSi… -1.08 0.683 -1.58 1.16e- 1 -2.43 0.269
4 Fertilitylow:Relatio… 2.13 0.996 2.14 3.37e- 2 0.167 4.10
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.70 0.470 14.3 8.12e-38 5.78 7.62
2 Fertilitylow -0.926 0.532 -1.74 8.28e- 2 -1.97 0.121
3 RelationshipStatusSi… -1.75 0.627 -2.79 5.58e- 3 -2.98 -0.514
4 Fertilitylow:Relatio… 1.63 0.716 2.28 2.34e- 2 0.222 3.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.99 0.372 16.1 1.65e-45 5.25 6.72
2 Fertilitylow -0.429 0.423 -1.02 3.10e- 1 -1.26 0.401
3 RelationshipStatusSi… -0.905 0.685 -1.32 1.87e- 1 -2.25 0.440
4 Fertilitylow:Relatio… 1.53 0.793 1.92 5.52e- 2 -0.0339 3.09
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.70 0.463 14.5 2.82e-36 5.79 7.61
2 Fertilitylow -0.926 0.525 -1.76 7.89e- 2 -1.96 0.108
3 RelationshipStatusSi… -1.62 0.730 -2.22 2.74e- 2 -3.05 -0.181
4 Fertilitylow:Relatio… 2.02 0.843 2.40 1.70e- 2 0.363 3.68
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.44 0.371 17.4 4.03e-51 5.72 7.17
2 Fertilitylow -0.725 0.462 -1.57 1.18e- 1 -1.63 0.184
3 RelationshipStatusSi… -1.36 0.514 -2.65 8.47e- 3 -2.37 -0.349
4 Fertilitylow:Relatio… 1.32 0.636 2.08 3.82e- 2 0.0723 2.57
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.89 0.305 19.3 1.03e-59 5.29 6.49
2 Fertilitylow -0.361 0.374 -0.967 3.34e- 1 -1.10 0.373
3 RelationshipStatusSi… -0.552 0.572 -0.965 3.35e- 1 -1.68 0.572
4 Fertilitylow:Relatio… 1.23 0.719 1.72 8.68e- 2 -0.179 2.65
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.44 0.366 17.6 5.41e-48 5.72 7.17
2 Fertilitylow -0.725 0.456 -1.59 1.13e- 1 -1.62 0.173
3 RelationshipStatusSi… -1.10 0.600 -1.84 6.70e- 2 -2.28 0.0779
4 Fertilitylow:Relatio… 1.60 0.757 2.11 3.56e- 2 0.108 3.09
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.87 0.450 15.3 9.23e-36 5.99 7.76
2 Fertilitylow -1.50 0.618 -2.43 1.59e- 2 -2.72 -0.284
3 RelationshipStatusSi… -2.05 0.596 -3.45 6.90e- 4 -3.23 -0.878
4 Fertilitylow:Relatio… 2.36 0.836 2.82 5.27e- 3 0.709 4.01
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.93 0.353 16.8 1.40e-40 5.24 6.63
2 Fertilitylow -0.450 0.496 -0.908 3.65e- 1 -1.43 0.527
3 RelationshipStatusSi… -0.859 0.683 -1.26 2.10e- 1 -2.21 0.487
4 Fertilitylow:Relatio… 1.06 0.971 1.09 2.77e- 1 -0.857 2.97
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.87 0.462 14.9 3.90e-31 5.96 7.79
2 Fertilitylow -1.50 0.634 -2.37 1.91e- 2 -2.75 -0.249
3 RelationshipStatusSi… -1.80 0.746 -2.42 1.69e- 2 -3.28 -0.329
4 Fertilitylow:Relatio… 2.11 1.05 2.01 4.62e- 2 0.0362 4.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.80 0.397 17.1 1.32e-43 6.02 7.58
2 Fertilitylow -1.42 0.562 -2.52 1.24e- 2 -2.52 -0.309
3 RelationshipStatusSi… -1.93 0.540 -3.56 4.40e- 4 -2.99 -0.861
4 Fertilitylow:Relatio… 2.21 0.767 2.88 4.38e- 3 0.695 3.72
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.04 0.317 19.1 4.21e-50 5.42 6.67
2 Fertilitylow -0.569 0.449 -1.27 2.07e- 1 -1.45 0.317
3 RelationshipStatusSi… -1.13 0.634 -1.78 7.62e- 2 -2.38 0.120
4 Fertilitylow:Relatio… 1.38 0.903 1.53 1.29e- 1 -0.402 3.15
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.80 0.404 16.9 3.54e-38 6.00 7.60
2 Fertilitylow -1.42 0.571 -2.48 1.41e- 2 -2.54 -0.289
3 RelationshipStatusSi… -1.89 0.680 -2.77 6.14e- 3 -3.23 -0.545
4 Fertilitylow:Relatio… 2.22 0.967 2.30 2.27e- 2 0.315 4.13
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.74 0.425 15.9 3.94e-37 5.90 7.58
2 Fertilitylow -1.43 0.620 -2.30 2.24e- 2 -2.65 -0.205
3 RelationshipStatusSi… -1.43 0.585 -2.44 1.54e- 2 -2.58 -0.276
4 Fertilitylow:Relatio… 1.55 0.857 1.81 7.14e- 2 -0.136 3.24
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.21 0.345 18.0 1.42e-43 5.53 6.89
2 Fertilitylow -0.859 0.503 -1.71 8.94e- 2 -1.85 0.133
3 RelationshipStatusSi… -0.844 0.666 -1.27 2.06e- 1 -2.16 0.469
4 Fertilitylow:Relatio… 0.937 0.984 0.951 3.43e- 1 -1.00 2.88
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.74 0.436 15.4 2.03e-32 5.88 7.60
2 Fertilitylow -1.43 0.638 -2.24 2.66e- 2 -2.69 -0.168
3 RelationshipStatusSi… -1.37 0.725 -1.89 6.05e- 2 -2.80 0.0614
4 Fertilitylow:Relatio… 1.51 1.07 1.41 1.62e- 1 -0.611 3.62
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.90 0.467 14.8 1.64e-38 5.98 7.82
2 Fertilitylow -1.15 0.545 -2.11 3.53e- 2 -2.22 -0.0795
3 RelationshipStatusSi… -2.17 0.642 -3.38 7.98e- 4 -3.44 -0.910
4 Fertilitylow:Relatio… 1.98 0.747 2.65 8.51e- 3 0.507 3.44
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.08 0.377 16.1 7.77e-44 5.33 6.82
2 Fertilitylow -0.507 0.436 -1.16 2.46e- 1 -1.37 0.351
3 RelationshipStatusSi… -1.26 0.741 -1.70 8.91e- 2 -2.72 0.194
4 Fertilitylow:Relatio… 1.55 0.867 1.78 7.52e- 2 -0.158 3.25
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.90 0.463 14.9 7.19e-36 5.99 7.81
2 Fertilitylow -1.15 0.541 -2.13 3.42e- 2 -2.22 -0.0866
3 RelationshipStatusSi… -2.09 0.778 -2.68 7.90e- 3 -3.62 -0.552
4 Fertilitylow:Relatio… 2.19 0.912 2.40 1.70e- 2 0.396 3.99
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.85 0.405 16.9 5.44e-47 6.05 7.64
2 Fertilitylow -1.23 0.505 -2.44 1.52e- 2 -2.22 -0.239
3 RelationshipStatusSi… -1.64 0.558 -2.93 3.62e- 3 -2.73 -0.537
4 Fertilitylow:Relatio… 1.43 0.690 2.07 3.94e- 2 0.0699 2.78
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.24 0.330 18.9 4.79e-55 5.59 6.89
2 Fertilitylow -0.806 0.403 -2.00 4.63e- 2 -1.60 -0.0132
3 RelationshipStatusSi… -0.924 0.633 -1.46 1.45e- 1 -2.17 0.321
4 Fertilitylow:Relatio… 1.22 0.796 1.53 1.27e- 1 -0.349 2.78
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.85 0.401 17.1 3.78e-43 6.06 7.64
2 Fertilitylow -1.23 0.500 -2.46 1.45e- 2 -2.22 -0.247
3 RelationshipStatusSi… -1.53 0.665 -2.31 2.20e- 2 -2.84 -0.223
4 Fertilitylow:Relatio… 1.64 0.839 1.96 5.14e- 2 -0.0101 3.30
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.43 0.471 13.6 3.48e-31 5.50 7.36
2 Fertilitylow -1.38 0.619 -2.24 2.64e- 2 -2.60 -0.164
3 RelationshipStatusSi… -1.48 0.628 -2.36 1.94e- 2 -2.72 -0.242
4 Fertilitylow:Relatio… 2.21 0.841 2.63 9.16e- 3 0.553 3.87
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.66 0.372 15.2 2.96e-36 4.92 6.39
2 Fertilitylow -0.547 0.503 -1.09 2.78e- 1 -1.54 0.445
3 RelationshipStatusSi… -0.209 0.694 -0.301 7.64e- 1 -1.58 1.16
4 Fertilitylow:Relatio… 1.24 0.927 1.34 1.83e- 1 -0.589 3.06
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.43 0.471 13.7 4.46e-29 5.50 7.36
2 Fertilitylow -1.38 0.617 -2.24 2.64e- 2 -2.60 -0.164
3 RelationshipStatusSi… -0.983 0.747 -1.32 1.90e- 1 -2.46 0.491
4 Fertilitylow:Relatio… 2.07 0.987 2.10 3.70e- 2 0.127 4.02
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.43 0.412 15.6 4.11e-39 5.62 7.24
2 Fertilitylow -1.35 0.555 -2.44 1.55e- 2 -2.44 -0.260
3 RelationshipStatusSi… -1.34 0.566 -2.36 1.88e- 2 -2.45 -0.224
4 Fertilitylow:Relatio… 2.00 0.766 2.62 9.39e- 3 0.496 3.51
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.75 0.337 17.1 3.15e-44 5.09 6.41
2 Fertilitylow -0.629 0.456 -1.38 1.69e- 1 -1.53 0.270
3 RelationshipStatusSi… -0.102 0.630 -0.162 8.71e- 1 -1.34 1.14
4 Fertilitylow:Relatio… 1.15 0.853 1.35 1.78e- 1 -0.527 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.43 0.409 15.7 1.39e-36 5.62 7.24
2 Fertilitylow -1.35 0.550 -2.46 1.49e- 2 -2.44 -0.267
3 RelationshipStatusSi… -0.782 0.665 -1.18 2.41e- 1 -2.09 0.530
4 Fertilitylow:Relatio… 1.88 0.898 2.09 3.80e- 2 0.104 3.65
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.50 0.452 14.4 2.78e-33 5.61 7.39
2 Fertilitylow -1.46 0.613 -2.38 1.81e- 2 -2.67 -0.252
3 RelationshipStatusSi… -1.05 0.600 -1.75 8.13e- 2 -2.23 0.132
4 Fertilitylow:Relatio… 1.66 0.840 1.98 4.91e- 2 0.00670 3.32
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.87 0.349 16.8 3.74e-41 5.18 6.56
2 Fertilitylow -0.758 0.498 -1.52 1.29e- 1 -1.74 0.224
3 RelationshipStatusSi… 0.106 0.676 0.157 8.76e- 1 -1.23 1.44
4 Fertilitylow:Relatio… 0.634 0.933 0.680 4.97e- 1 -1.20 2.47
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.50 0.452 14.4 9.47e-31 5.60 7.39
2 Fertilitylow -1.46 0.613 -2.38 1.83e- 2 -2.67 -0.251
3 RelationshipStatusSi… -0.520 0.731 -0.710 4.78e- 1 -1.96 0.924
4 Fertilitylow:Relatio… 1.34 0.994 1.34 1.81e- 1 -0.626 3.30
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.39 0.486 13.2 6.25e-33 5.44 7.35
2 Fertilitylow -0.602 0.549 -1.10 2.73e- 1 -1.68 0.477
3 RelationshipStatusSi… -1.48 0.652 -2.28 2.32e- 2 -2.77 -0.203
4 Fertilitylow:Relatio… 1.38 0.742 1.86 6.35e- 2 -0.0780 2.84
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.68 0.382 14.9 8.49e-40 4.93 6.43
2 Fertilitylow -0.106 0.434 -0.246 8.06e- 1 -0.959 0.746
3 RelationshipStatusSi… -0.397 0.725 -0.547 5.84e- 1 -1.82 1.03
4 Fertilitylow:Relatio… 1.07 0.834 1.28 2.03e- 1 -0.575 2.71
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.39 0.482 13.3 1.68e-31 5.44 7.34
2 Fertilitylow -0.602 0.544 -1.11 2.69e- 1 -1.67 0.469
3 RelationshipStatusSi… -1.11 0.776 -1.43 1.53e- 1 -2.64 0.417
4 Fertilitylow:Relatio… 1.56 0.890 1.75 8.07e- 2 -0.192 3.31
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.408 15.7 2.38e-43 5.60 7.21
2 Fertilitylow -0.700 0.491 -1.43 1.54e- 1 -1.66 0.265
3 RelationshipStatusSi… -1.06 0.547 -1.93 5.44e- 2 -2.13 0.0200
4 Fertilitylow:Relatio… 0.928 0.667 1.39 1.65e- 1 -0.383 2.24
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.77 0.317 18.2 6.09e-54 5.15 6.39
2 Fertilitylow -0.258 0.386 -0.669 5.04e- 1 -1.02 0.500
3 RelationshipStatusSi… 0.191 0.624 0.306 7.60e- 1 -1.04 1.42
4 Fertilitylow:Relatio… 0.314 0.763 0.412 6.81e- 1 -1.19 1.81
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.40 0.404 15.8 8.93e-41 5.61 7.20
2 Fertilitylow -0.700 0.486 -1.44 1.51e- 1 -1.66 0.257
3 RelationshipStatusSi… -0.444 0.667 -0.665 5.06e- 1 -1.76 0.870
4 Fertilitylow:Relatio… 0.756 0.812 0.930 3.53e- 1 -0.843 2.35
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.31 0.470 13.4 8.07e-31 5.38 7.24
2 Fertilitylow -1.22 0.612 -2.00 4.66e- 2 -2.43 -0.0187
3 RelationshipStatusSi… -1.49 0.614 -2.42 1.64e- 2 -2.70 -0.275
4 Fertilitylow:Relatio… 2.09 0.814 2.57 1.09e- 2 0.485 3.69
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.66 0.366 15.5 1.10e-37 4.94 6.38
2 Fertilitylow -0.549 0.486 -1.13 2.60e- 1 -1.51 0.409
3 RelationshipStatusSi… -0.725 0.660 -1.10 2.73e- 1 -2.02 0.575
4 Fertilitylow:Relatio… 1.72 0.882 1.95 5.25e- 2 -0.0189 3.46
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.31 0.472 13.4 1.92e-28 5.38 7.24
2 Fertilitylow -1.22 0.614 -1.99 4.78e- 2 -2.44 -0.0119
3 RelationshipStatusSi… -1.37 0.723 -1.90 5.92e- 2 -2.80 0.0539
4 Fertilitylow:Relatio… 2.39 0.958 2.50 1.33e- 2 0.505 4.28
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.36 0.442 14.4 2.32e-35 5.49 7.23
2 Fertilitylow -1.19 0.569 -2.10 3.70e- 2 -2.31 -0.0723
3 RelationshipStatusSi… -1.71 0.568 -3.01 2.86e- 3 -2.83 -0.591
4 Fertilitylow:Relatio… 2.13 0.751 2.84 4.90e- 3 0.651 3.61
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.49 0.336 16.3 2.26e-42 4.83 6.16
2 Fertilitylow -0.332 0.447 -0.744 4.58e- 1 -1.21 0.547
3 RelationshipStatusSi… -0.558 0.611 -0.913 3.62e- 1 -1.76 0.644
4 Fertilitylow:Relatio… 1.36 0.820 1.66 9.90e- 2 -0.257 2.97
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.36 0.440 14.5 7.72e-33 5.49 7.23
2 Fertilitylow -1.19 0.567 -2.10 3.66e- 2 -2.31 -0.0750
3 RelationshipStatusSi… -1.42 0.667 -2.14 3.40e- 2 -2.74 -0.109
4 Fertilitylow:Relatio… 2.22 0.883 2.51 1.28e- 2 0.477 3.96
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.95 0.402 14.8 1.20e-35 5.16 6.74
2 Fertilitylow -0.760 0.579 -1.31 1.90e- 1 -1.90 0.380
3 RelationshipStatusSi… -0.887 0.562 -1.58 1.16e- 1 -1.99 0.220
4 Fertilitylow:Relatio… 1.31 0.799 1.64 1.03e- 1 -0.267 2.88
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.62 0.327 17.2 1.10e-43 4.97 6.26
2 Fertilitylow -0.463 0.470 -0.984 3.26e- 1 -1.39 0.464
3 RelationshipStatusSi… -0.459 0.641 -0.716 4.74e- 1 -1.72 0.803
4 Fertilitylow:Relatio… 1.34 0.892 1.51 1.33e- 1 -0.414 3.10
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.95 0.410 14.5 3.78e-32 5.14 6.76
2 Fertilitylow -0.760 0.589 -1.29 1.99e- 1 -1.92 0.403
3 RelationshipStatusSi… -0.794 0.694 -1.14 2.55e- 1 -2.16 0.577
4 Fertilitylow:Relatio… 1.64 0.970 1.69 9.28e- 2 -0.275 3.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.48 0.492 13.2 4.55e-33 5.51 7.45
2 Fertilitylow -0.855 0.555 -1.54 1.25e- 1 -1.95 0.237
3 RelationshipStatusSi… -1.50 0.650 -2.31 2.12e- 2 -2.78 -0.226
4 Fertilitylow:Relatio… 1.25 0.740 1.68 9.30e- 2 -0.209 2.70
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.82 0.383 15.2 2.85e-41 5.06 6.57
2 Fertilitylow -0.419 0.436 -0.962 3.36e- 1 -1.28 0.437
3 RelationshipStatusSi… -0.687 0.716 -0.960 3.38e- 1 -2.10 0.721
4 Fertilitylow:Relatio… 1.02 0.820 1.24 2.15e- 1 -0.594 2.63
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.48 0.490 13.2 1.90e-31 5.52 7.44
2 Fertilitylow -0.855 0.553 -1.54 1.23e- 1 -1.94 0.234
3 RelationshipStatusSi… -1.35 0.774 -1.74 8.22e- 2 -2.88 0.174
4 Fertilitylow:Relatio… 1.45 0.883 1.65 1.01e- 1 -0.285 3.19
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.01 0.382 15.7 1.40e-43 5.26 6.76
2 Fertilitylow -0.315 0.478 -0.659 5.10e- 1 -1.25 0.624
3 RelationshipStatusSi… -0.947 0.525 -1.80 7.21e- 2 -1.98 0.0855
4 Fertilitylow:Relatio… 0.629 0.652 0.964 3.35e- 1 -0.653 1.91
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.62 0.309 18.2 4.74e-54 5.02 6.23
2 Fertilitylow -0.202 0.383 -0.528 5.98e- 1 -0.955 0.551
3 RelationshipStatusSi… -0.413 0.589 -0.701 4.84e- 1 -1.57 0.744
4 Fertilitylow:Relatio… 0.777 0.731 1.06 2.88e- 1 -0.660 2.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.01 0.381 15.8 9.39e-41 5.26 6.76
2 Fertilitylow -0.315 0.476 -0.661 5.09e- 1 -1.25 0.623
3 RelationshipStatusSi… -0.800 0.627 -1.28 2.03e- 1 -2.03 0.434
4 Fertilitylow:Relatio… 0.889 0.780 1.14 2.55e- 1 -0.647 2.43
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.97 0.499 12.0 1.12e-25 4.98 6.95
2 Fertilitylow -1.10 0.637 -1.73 8.53e- 2 -2.36 0.154
3 RelationshipStatusSi… -1.30 0.652 -1.99 4.77e- 2 -2.58 -0.0135
4 Fertilitylow:Relatio… 2.02 0.854 2.37 1.86e- 2 0.341 3.71
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.34 0.382 14.0 3.76e-32 4.59 6.10
2 Fertilitylow -0.449 0.506 -0.887 3.76e- 1 -1.45 0.548
3 RelationshipStatusSi… -0.479 0.713 -0.671 5.03e- 1 -1.88 0.926
4 Fertilitylow:Relatio… 1.61 0.932 1.73 8.58e- 2 -0.229 3.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.97 0.503 11.9 8.95e-24 4.97 6.96
2 Fertilitylow -1.10 0.642 -1.71 8.85e- 2 -2.37 0.168
3 RelationshipStatusSi… -1.10 0.787 -1.40 1.64e- 1 -2.65 0.453
4 Fertilitylow:Relatio… 2.26 1.02 2.23 2.74e- 2 0.255 4.27
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.13 0.443 13.8 9.36e-33 5.26 7.01
2 Fertilitylow -1.23 0.576 -2.13 3.39e- 2 -2.36 -0.0940
3 RelationshipStatusSi… -1.32 0.593 -2.23 2.64e- 2 -2.49 -0.156
4 Fertilitylow:Relatio… 1.89 0.780 2.42 1.64e- 2 0.349 3.42
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.51 0.351 15.7 3.97e-39 4.82 6.20
2 Fertilitylow -0.638 0.463 -1.38 1.69e- 1 -1.55 0.274
3 RelationshipStatusSi… -0.392 0.648 -0.605 5.46e- 1 -1.67 0.885
4 Fertilitylow:Relatio… 1.52 0.856 1.78 7.64e- 2 -0.163 3.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.13 0.445 13.8 2.21e-30 5.26 7.01
2 Fertilitylow -1.23 0.577 -2.13 3.48e- 2 -2.37 -0.0885
3 RelationshipStatusSi… -1.02 0.703 -1.45 1.50e- 1 -2.40 0.370
4 Fertilitylow:Relatio… 2.11 0.923 2.29 2.32e- 2 0.292 3.93
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.17 0.443 13.9 7.05e-32 5.30 7.05
2 Fertilitylow -1.42 0.607 -2.33 2.05e- 2 -2.61 -0.221
3 RelationshipStatusSi… -0.851 0.589 -1.45 1.50e- 1 -2.01 0.309
4 Fertilitylow:Relatio… 1.55 0.832 1.86 6.39e- 2 -0.0903 3.19
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.65 0.345 16.4 7.63e-40 4.98 6.33
2 Fertilitylow -0.841 0.495 -1.70 9.09e- 2 -1.82 0.135
3 RelationshipStatusSi… 0.131 0.652 0.201 8.41e- 1 -1.15 1.42
4 Fertilitylow:Relatio… 0.800 0.911 0.878 3.81e- 1 -0.996 2.60
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.17 0.445 13.9 1.96e-29 5.30 7.05
2 Fertilitylow -1.42 0.609 -2.32 2.13e- 2 -2.62 -0.214
3 RelationshipStatusSi… -0.389 0.711 -0.547 5.85e- 1 -1.79 1.01
4 Fertilitylow:Relatio… 1.38 0.979 1.41 1.62e- 1 -0.557 3.31
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.01 0.526 11.4 4.40e-26 4.98 7.04
2 Fertilitylow -0.331 0.587 -0.564 5.73e- 1 -1.49 0.823
3 RelationshipStatusSi… -1.30 0.684 -1.89 5.92e- 2 -2.64 0.0508
4 Fertilitylow:Relatio… 1.03 0.774 1.33 1.85e- 1 -0.493 2.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.40 0.400 13.5 5.76e-34 4.61 6.19
2 Fertilitylow 0.00873 0.453 0.0193 9.85e- 1 -0.881 0.899
3 RelationshipStatusSi… -0.540 0.745 -0.725 4.69e- 1 -2.00 0.925
4 Fertilitylow:Relatio… 1.03 0.851 1.21 2.26e- 1 -0.640 2.70
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.01 0.526 11.4 6.90e-25 4.97 7.05
2 Fertilitylow -0.331 0.587 -0.564 5.73e- 1 -1.49 0.825
3 RelationshipStatusSi… -1.15 0.818 -1.40 1.62e- 1 -2.76 0.462
4 Fertilitylow:Relatio… 1.37 0.928 1.48 1.40e- 1 -0.454 3.20
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.09 0.410 14.8 2.41e-39 5.28 6.90
2 Fertilitylow -0.512 0.500 -1.02 3.06e- 1 -1.49 0.471
3 RelationshipStatusSi… -0.892 0.549 -1.63 1.05e- 1 -1.97 0.187
4 Fertilitylow:Relatio… 0.580 0.676 0.858 3.91e- 1 -0.749 1.91
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.55 0.320 17.3 1.20e-49 4.92 6.17
2 Fertilitylow -0.208 0.394 -0.527 5.99e- 1 -0.984 0.568
3 RelationshipStatusSi… 0.171 0.618 0.277 7.82e- 1 -1.04 1.39
4 Fertilitylow:Relatio… 0.113 0.761 0.148 8.82e- 1 -1.38 1.61
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.09 0.411 14.8 1.08e-36 5.28 6.90
2 Fertilitylow -0.512 0.500 -1.02 3.07e- 1 -1.50 0.473
3 RelationshipStatusSi… -0.373 0.669 -0.559 5.77e- 1 -1.69 0.943
4 Fertilitylow:Relatio… 0.417 0.820 0.508 6.12e- 1 -1.20 2.03
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.519 12.6 6.75e-27 5.52 7.57
2 Fertilitylow -1.50 0.677 -2.21 2.82e- 2 -2.83 -0.162
3 RelationshipStatusSi… -1.69 0.680 -2.49 1.35e- 2 -3.03 -0.354
4 Fertilitylow:Relatio… 2.44 0.914 2.67 8.22e- 3 0.638 4.24
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.81 0.404 14.4 2.73e-32 5.01 6.61
2 Fertilitylow -0.721 0.539 -1.34 1.83e- 1 -1.78 0.342
3 RelationshipStatusSi… -0.861 0.734 -1.17 2.42e- 1 -2.31 0.587
4 Fertilitylow:Relatio… 2.16 1.02 2.12 3.52e- 2 0.152 4.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.523 12.5 1.46e-24 5.51 7.58
2 Fertilitylow -1.50 0.682 -2.20 2.97e- 2 -2.84 -0.150
3 RelationshipStatusSi… -1.59 0.805 -1.97 5.03e- 2 -3.18 0.00218
4 Fertilitylow:Relatio… 2.94 1.10 2.67 8.52e- 3 0.762 5.12
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.485 13.5 4.90e-31 5.62 7.53
2 Fertilitylow -1.42 0.626 -2.26 2.45e- 2 -2.65 -0.184
3 RelationshipStatusSi… -1.93 0.622 -3.09 2.23e- 3 -3.15 -0.699
4 Fertilitylow:Relatio… 2.50 0.840 2.98 3.20e- 3 0.848 4.16
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.60 0.369 15.2 2.06e-36 4.87 6.32
2 Fertilitylow -0.422 0.494 -0.854 3.94e- 1 -1.40 0.551
3 RelationshipStatusSi… -0.648 0.674 -0.961 3.37e- 1 -1.98 0.680
4 Fertilitylow:Relatio… 1.74 0.950 1.83 6.81e- 2 -0.131 3.61
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.484 13.6 1.39e-28 5.62 7.53
2 Fertilitylow -1.42 0.625 -2.27 2.45e- 2 -2.65 -0.185
3 RelationshipStatusSi… -1.62 0.736 -2.21 2.87e- 2 -3.08 -0.171
4 Fertilitylow:Relatio… 2.74 1.01 2.70 7.61e- 3 0.737 4.74
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.31 0.455 13.8 1.30e-30 5.41 7.20
2 Fertilitylow -1.14 0.651 -1.76 8.06e- 2 -2.43 0.141
3 RelationshipStatusSi… -1.11 0.638 -1.74 8.33e- 2 -2.37 0.148
4 Fertilitylow:Relatio… 1.64 0.916 1.79 7.46e- 2 -0.165 3.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.83 0.371 15.7 3.63e-36 5.10 6.57
2 Fertilitylow -0.697 0.531 -1.31 1.91e- 1 -1.74 0.350
3 RelationshipStatusSi… -0.359 0.729 -0.493 6.23e- 1 -1.80 1.08
4 Fertilitylow:Relatio… 1.56 1.06 1.47 1.43e- 1 -0.531 3.64
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.31 0.464 13.6 1.95e-27 5.39 7.22
2 Fertilitylow -1.14 0.663 -1.72 8.67e- 2 -2.45 0.167
3 RelationshipStatusSi… -0.832 0.788 -1.06 2.93e- 1 -2.39 0.725
4 Fertilitylow:Relatio… 2.00 1.14 1.75 8.17e- 2 -0.255 4.26
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.77 0.544 12.4 2.16e-29 5.70 7.84
2 Fertilitylow -1.02 0.613 -1.66 9.81e- 2 -2.22 0.189
3 RelationshipStatusSi… -1.73 0.719 -2.41 1.67e- 2 -3.15 -0.315
4 Fertilitylow:Relatio… 1.38 0.819 1.69 9.25e- 2 -0.229 2.99
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.01 0.424 14.2 6.13e-36 5.18 6.85
2 Fertilitylow -0.567 0.481 -1.18 2.39e- 1 -1.51 0.379
3 RelationshipStatusSi… -0.815 0.793 -1.03 3.05e- 1 -2.38 0.745
4 Fertilitylow:Relatio… 1.31 0.914 1.44 1.52e- 1 -0.485 3.11
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.77 0.539 12.6 4.62e-28 5.71 7.83
2 Fertilitylow -1.02 0.608 -1.67 9.56e- 2 -2.21 0.180
3 RelationshipStatusSi… -1.57 0.852 -1.84 6.65e- 2 -3.25 0.108
4 Fertilitylow:Relatio… 1.76 0.977 1.80 7.26e- 2 -0.163 3.69
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.35 0.426 14.9 1.17e-38 5.51 7.18
2 Fertilitylow -0.580 0.528 -1.10 2.73e- 1 -1.62 0.459
3 RelationshipStatusSi… -1.17 0.585 -2.00 4.63e- 2 -2.32 -0.0195
4 Fertilitylow:Relatio… 0.790 0.724 1.09 2.76e- 1 -0.634 2.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.82 0.346 16.8 2.86e-46 5.14 6.50
2 Fertilitylow -0.374 0.425 -0.880 3.80e- 1 -1.21 0.462
3 RelationshipStatusSi… -0.340 0.655 -0.519 6.04e- 1 -1.63 0.949
4 Fertilitylow:Relatio… 0.808 0.821 0.984 3.26e- 1 -0.807 2.42
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.35 0.423 15.0 3.45e-36 5.51 7.18
2 Fertilitylow -0.580 0.524 -1.11 2.70e- 1 -1.61 0.453
3 RelationshipStatusSi… -0.867 0.694 -1.25 2.13e- 1 -2.23 0.500
4 Fertilitylow:Relatio… 1.01 0.870 1.17 2.45e- 1 -0.699 2.73
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.26 0.547 11.4 4.88e-23 5.18 7.33
2 Fertilitylow -1.32 0.703 -1.88 6.23e- 2 -2.71 0.0685
3 RelationshipStatusSi… -1.57 0.725 -2.17 3.13e- 2 -3.00 -0.143
4 Fertilitylow:Relatio… 2.26 0.961 2.36 1.96e- 2 0.367 4.16
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.54 0.428 12.9 2.07e-27 4.70 6.39
2 Fertilitylow -0.641 0.567 -1.13 2.60e- 1 -1.76 0.478
3 RelationshipStatusSi… -0.628 0.793 -0.792 4.29e- 1 -2.19 0.937
4 Fertilitylow:Relatio… 1.99 1.06 1.87 6.35e- 2 -0.113 4.09
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.26 0.549 11.4 1.98e-21 5.17 7.34
2 Fertilitylow -1.32 0.706 -1.87 6.37e- 2 -2.71 0.0761
3 RelationshipStatusSi… -1.34 0.864 -1.55 1.23e- 1 -3.05 0.367
4 Fertilitylow:Relatio… 2.67 1.14 2.33 2.12e- 2 0.405 4.93
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.39 0.489 13.1 1.07e-28 5.42 7.35
2 Fertilitylow -1.44 0.642 -2.23 2.66e- 2 -2.70 -0.169
3 RelationshipStatusSi… -1.55 0.664 -2.33 2.06e- 2 -2.86 -0.240
4 Fertilitylow:Relatio… 2.06 0.889 2.32 2.13e- 2 0.310 3.82
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.70 0.395 14.4 5.93e-33 4.92 6.48
2 Fertilitylow -0.843 0.525 -1.61 1.10e- 1 -1.88 0.191
3 RelationshipStatusSi… -0.512 0.729 -0.703 4.83e- 1 -1.95 0.925
4 Fertilitylow:Relatio… 1.87 0.994 1.88 6.16e- 2 -0.0918 3.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.39 0.489 13.1 1.17e-26 5.42 7.36
2 Fertilitylow -1.44 0.643 -2.23 2.70e- 2 -2.70 -0.166
3 RelationshipStatusSi… -1.20 0.782 -1.54 1.26e- 1 -2.75 0.342
4 Fertilitylow:Relatio… 2.46 1.06 2.32 2.14e- 2 0.369 4.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.505 12.7 1.71e-26 5.41 7.41
2 Fertilitylow -1.50 0.684 -2.20 2.93e- 2 -2.85 -0.153
3 RelationshipStatusSi… -1.06 0.674 -1.57 1.19e- 1 -2.39 0.274
4 Fertilitylow:Relatio… 1.56 0.954 1.64 1.03e- 1 -0.318 3.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.85 0.399 14.7 3.59e-32 5.06 6.64
2 Fertilitylow -0.982 0.562 -1.75 8.24e- 2 -2.09 0.127
3 RelationshipStatusSi… -0.121 0.738 -0.164 8.70e- 1 -1.58 1.34
4 Fertilitylow:Relatio… 1.13 1.06 1.06 2.89e- 1 -0.963 3.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.507 12.7 1.59e-24 5.41 7.41
2 Fertilitylow -1.50 0.685 -2.19 3.01e- 2 -2.86 -0.147
3 RelationshipStatusSi… -0.679 0.801 -0.848 3.98e- 1 -2.26 0.905
4 Fertilitylow:Relatio… 1.65 1.13 1.46 1.47e- 1 -0.584 3.88
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.571 10.8 2.41e-23 5.05 7.30
2 Fertilitylow -0.344 0.639 -0.539 5.90e- 1 -1.60 0.913
3 RelationshipStatusSi… -1.53 0.755 -2.02 4.40e- 2 -3.01 -0.0416
4 Fertilitylow:Relatio… 1.14 0.856 1.34 1.82e- 1 -0.540 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.55 0.448 12.4 6.83e-29 4.67 6.43
2 Fertilitylow -0.0868 0.504 -0.172 8.63e- 1 -1.08 0.905
3 RelationshipStatusSi… -0.820 0.818 -1.00 3.16e- 1 -2.43 0.788
4 Fertilitylow:Relatio… 1.54 0.944 1.63 1.04e- 1 -0.318 3.40
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.18 0.568 10.9 2.08e-22 5.06 7.30
2 Fertilitylow -0.344 0.636 -0.542 5.88e- 1 -1.60 0.908
3 RelationshipStatusSi… -1.45 0.884 -1.64 1.03e- 1 -3.19 0.296
4 Fertilitylow:Relatio… 1.80 1.02 1.77 7.81e- 2 -0.203 3.80
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.27 0.457 13.7 9.64e-34 5.37 7.17
2 Fertilitylow -0.537 0.553 -0.970 3.33e- 1 -1.63 0.552
3 RelationshipStatusSi… -1.07 0.615 -1.75 8.17e- 2 -2.28 0.136
4 Fertilitylow:Relatio… 0.627 0.754 0.831 4.07e- 1 -0.857 2.11
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.68 0.361 15.7 2.48e-41 4.97 6.40
2 Fertilitylow -0.300 0.440 -0.680 4.97e- 1 -1.17 0.567
3 RelationshipStatusSi… -0.0288 0.687 -0.0419 9.67e- 1 -1.38 1.32
4 Fertilitylow:Relatio… 0.524 0.857 0.612 5.41e- 1 -1.16 2.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.27 0.456 13.7 1.49e-31 5.37 7.17
2 Fertilitylow -0.537 0.552 -0.972 3.32e- 1 -1.62 0.551
3 RelationshipStatusSi… -0.614 0.738 -0.832 4.06e- 1 -2.07 0.841
4 Fertilitylow:Relatio… 0.761 0.915 0.832 4.06e- 1 -1.04 2.56
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.501 12.8 1.56e-27 5.42 7.40
2 Fertilitylow -0.565 0.655 -0.863 3.89e- 1 -1.86 0.727
3 RelationshipStatusSi… -1.64 0.645 -2.54 1.19e- 2 -2.91 -0.366
4 Fertilitylow:Relatio… 1.18 0.869 1.35 1.78e- 1 -0.539 2.89
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.84 0.389 15.0 2.21e-34 5.08 6.61
2 Fertilitylow -0.247 0.517 -0.478 6.33e- 1 -1.27 0.773
3 RelationshipStatusSi… -1.29 0.677 -1.90 5.88e- 2 -2.62 0.0486
4 Fertilitylow:Relatio… 1.31 0.951 1.38 1.70e- 1 -0.565 3.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.496 12.9 1.19e-25 5.43 7.39
2 Fertilitylow -0.565 0.648 -0.871 3.85e- 1 -1.85 0.717
3 RelationshipStatusSi… -1.85 0.736 -2.52 1.30e- 2 -3.31 -0.396
4 Fertilitylow:Relatio… 1.63 1.02 1.60 1.12e- 1 -0.382 3.64
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.50 0.465 14.0 2.24e-32 5.58 7.41
2 Fertilitylow -0.675 0.608 -1.11 2.68e- 1 -1.87 0.523
3 RelationshipStatusSi… -1.83 0.598 -3.06 2.47e- 3 -3.01 -0.652
4 Fertilitylow:Relatio… 1.50 0.800 1.88 6.18e- 2 -0.0746 3.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.75 0.358 16.0 3.42e-39 5.05 6.46
2 Fertilitylow -0.0852 0.477 -0.179 8.58e- 1 -1.03 0.855
3 RelationshipStatusSi… -1.15 0.636 -1.80 7.32e- 2 -2.40 0.108
4 Fertilitylow:Relatio… 1.07 0.879 1.21 2.26e- 1 -0.665 2.80
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.50 0.457 14.2 2.56e-30 5.59 7.40
2 Fertilitylow -0.675 0.597 -1.13 2.60e- 1 -1.85 0.504
3 RelationshipStatusSi… -1.89 0.684 -2.76 6.37e- 3 -3.24 -0.540
4 Fertilitylow:Relatio… 1.66 0.931 1.78 7.71e- 2 -0.182 3.49
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.28 0.412 15.2 3.66e-35 5.46 7.09
2 Fertilitylow -0.263 0.605 -0.434 6.64e- 1 -1.46 0.930
3 RelationshipStatusSi… -1.12 0.583 -1.92 5.62e- 2 -2.27 0.0301
4 Fertilitylow:Relatio… 0.371 0.846 0.439 6.61e- 1 -1.30 2.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.88 0.339 17.3 1.42e-41 5.21 6.55
2 Fertilitylow -0.208 0.495 -0.421 6.74e- 1 -1.18 0.767
3 RelationshipStatusSi… -0.661 0.685 -0.966 3.35e- 1 -2.01 0.689
4 Fertilitylow:Relatio… 0.483 0.983 0.491 6.24e- 1 -1.46 2.42
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.28 0.413 15.2 7.09e-32 5.46 7.09
2 Fertilitylow -0.263 0.606 -0.434 6.65e- 1 -1.46 0.935
3 RelationshipStatusSi… -1.06 0.720 -1.47 1.44e- 1 -2.48 0.364
4 Fertilitylow:Relatio… 0.537 1.04 0.518 6.05e- 1 -1.51 2.59
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.61 0.529 12.5 1.61e-29 5.56 7.65
2 Fertilitylow -0.687 0.594 -1.16 2.48e- 1 -1.86 0.482
3 RelationshipStatusSi… -1.68 0.688 -2.44 1.54e- 2 -3.03 -0.323
4 Fertilitylow:Relatio… 1.24 0.785 1.58 1.16e- 1 -0.306 2.78
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.04 0.409 14.8 4.71e-38 5.23 6.84
2 Fertilitylow -0.339 0.464 -0.732 4.65e- 1 -1.25 0.573
3 RelationshipStatusSi… -1.37 0.738 -1.86 6.41e- 2 -2.82 0.0810
4 Fertilitylow:Relatio… 1.34 0.861 1.56 1.21e- 1 -0.354 3.03
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.60 0.518 12.8 1.22e-28 5.58 7.63
2 Fertilitylow -0.687 0.582 -1.18 2.39e- 1 -1.83 0.460
3 RelationshipStatusSi… -1.94 0.791 -2.45 1.50e- 2 -3.50 -0.380
4 Fertilitylow:Relatio… 1.69 0.915 1.84 6.65e- 2 -0.116 3.49
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.24 0.404 15.4 9.95e-41 5.45 7.04
2 Fertilitylow -0.284 0.505 -0.562 5.75e- 1 -1.28 0.710
3 RelationshipStatusSi… -1.12 0.558 -2.01 4.49e- 2 -2.22 -0.0258
4 Fertilitylow:Relatio… 0.612 0.693 0.883 3.78e- 1 -0.752 1.98
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.86 0.327 17.9 2.50e-50 5.21 6.50
2 Fertilitylow -0.126 0.405 -0.310 7.57e- 1 -0.923 0.672
3 RelationshipStatusSi… -0.758 0.633 -1.20 2.32e- 1 -2.00 0.487
4 Fertilitylow:Relatio… 0.578 0.791 0.730 4.66e- 1 -0.979 2.13
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.24 0.397 15.7 1.72e-38 5.46 7.03
2 Fertilitylow -0.284 0.496 -0.572 5.68e- 1 -1.26 0.694
3 RelationshipStatusSi… -1.15 0.661 -1.73 8.45e- 2 -2.45 0.157
4 Fertilitylow:Relatio… 0.736 0.829 0.888 3.76e- 1 -0.897 2.37
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.47 0.461 14.1 8.75e-32 5.57 7.38
2 Fertilitylow -1.02 0.623 -1.65 1.01e- 1 -2.25 0.203
3 RelationshipStatusSi… -1.76 0.606 -2.90 4.16e- 3 -2.95 -0.561
4 Fertilitylow:Relatio… 1.98 0.845 2.34 2.02e- 2 0.313 3.65
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.63 0.358 15.7 5.47e-37 4.92 6.33
2 Fertilitylow -0.0228 0.506 -0.0452 9.64e- 1 -1.02 0.974
3 RelationshipStatusSi… -0.614 0.683 -0.899 3.69e- 1 -1.96 0.732
4 Fertilitylow:Relatio… 0.473 0.948 0.498 6.19e- 1 -1.40 2.34
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.47 0.463 14.0 5.93e-29 5.56 7.39
2 Fertilitylow -1.02 0.626 -1.64 1.04e- 1 -2.26 0.213
3 RelationshipStatusSi… -1.46 0.738 -1.98 4.95e- 2 -2.92 -0.00347
4 Fertilitylow:Relatio… 1.47 1.01 1.46 1.46e- 1 -0.520 3.47
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.410 16.0 1.06e-39 5.77 7.38
2 Fertilitylow -1.13 0.567 -1.99 4.74e- 2 -2.25 -0.0133
3 RelationshipStatusSi… -1.79 0.550 -3.25 1.31e- 3 -2.87 -0.705
4 Fertilitylow:Relatio… 1.89 0.772 2.45 1.51e- 2 0.368 3.41
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.83 0.323 18.0 2.26e-46 5.20 6.47
2 Fertilitylow -0.282 0.459 -0.615 5.39e- 1 -1.19 0.621
3 RelationshipStatusSi… -0.973 0.634 -1.54 1.26e- 1 -2.22 0.275
4 Fertilitylow:Relatio… 0.773 0.878 0.881 3.79e- 1 -0.955 2.50
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.409 16.1 4.04e-36 5.76 7.38
2 Fertilitylow -1.13 0.566 -2.00 4.75e- 2 -2.25 -0.0126
3 RelationshipStatusSi… -1.71 0.674 -2.54 1.19e- 2 -3.04 -0.382
4 Fertilitylow:Relatio… 1.62 0.928 1.75 8.23e- 2 -0.210 3.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.429 15.2 3.96e-35 5.69 7.38
2 Fertilitylow -1.14 0.617 -1.85 6.63e- 2 -2.36 0.0773
3 RelationshipStatusSi… -1.35 0.581 -2.32 2.15e- 2 -2.49 -0.201
4 Fertilitylow:Relatio… 1.36 0.852 1.59 1.12e- 1 -0.322 3.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.94 0.342 17.4 1.34e-41 5.27 6.62
2 Fertilitylow -0.464 0.509 -0.912 3.63e- 1 -1.47 0.540
3 RelationshipStatusSi… -0.516 0.660 -0.782 4.35e- 1 -1.82 0.786
4 Fertilitylow:Relatio… 0.277 0.953 0.291 7.71e- 1 -1.60 2.16
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.431 15.2 6.32e-32 5.69 7.39
2 Fertilitylow -1.14 0.620 -1.84 6.80e- 2 -2.36 0.0854
3 RelationshipStatusSi… -1.11 0.707 -1.57 1.18e- 1 -2.51 0.285
4 Fertilitylow:Relatio… 0.952 1.01 0.941 3.48e- 1 -1.05 2.95
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.477 13.8 2.49e-34 5.63 7.51
2 Fertilitylow -0.687 0.553 -1.24 2.15e- 1 -1.77 0.400
3 RelationshipStatusSi… -1.91 0.639 -2.98 3.09e- 3 -3.16 -0.648
4 Fertilitylow:Relatio… 1.61 0.746 2.16 3.13e- 2 0.145 3.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.73 0.377 15.2 7.59e-40 4.99 6.48
2 Fertilitylow 0.0525 0.439 0.120 9.05e- 1 -0.811 0.916
3 RelationshipStatusSi… -0.818 0.722 -1.13 2.58e- 1 -2.24 0.602
4 Fertilitylow:Relatio… 0.598 0.849 0.705 4.81e- 1 -1.07 2.27
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.57 0.470 14.0 1.04e-32 5.65 7.50
2 Fertilitylow -0.687 0.544 -1.26 2.08e- 1 -1.76 0.386
3 RelationshipStatusSi… -1.66 0.761 -2.17 3.07e- 2 -3.16 -0.156
4 Fertilitylow:Relatio… 1.34 0.893 1.50 1.35e- 1 -0.421 3.10
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.403 16.3 5.14e-44 5.77 7.36
2 Fertilitylow -0.785 0.504 -1.56 1.20e- 1 -1.78 0.206
3 RelationshipStatusSi… -1.41 0.552 -2.55 1.13e- 2 -2.49 -0.320
4 Fertilitylow:Relatio… 1.06 0.689 1.54 1.25e- 1 -0.295 2.42
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.93 0.323 18.3 4.64e-52 5.29 6.57
2 Fertilitylow -0.245 0.403 -0.609 5.43e- 1 -1.04 0.548
3 RelationshipStatusSi… -0.448 0.631 -0.709 4.79e- 1 -1.69 0.794
4 Fertilitylow:Relatio… 0.0886 0.790 0.112 9.11e- 1 -1.47 1.64
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.56 0.396 16.6 2.17e-41 5.78 7.34
2 Fertilitylow -0.785 0.494 -1.59 1.14e- 1 -1.76 0.189
3 RelationshipStatusSi… -1.08 0.659 -1.64 1.02e- 1 -2.38 0.218
4 Fertilitylow:Relatio… 0.628 0.826 0.761 4.47e- 1 -0.998 2.25
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.25 0.531 11.8 4.04e-24 5.21 7.30
2 Fertilitylow -0.728 0.679 -1.07 2.85e- 1 -2.07 0.611
3 RelationshipStatusSi… -1.51 0.696 -2.18 3.09e- 2 -2.89 -0.141
4 Fertilitylow:Relatio… 1.35 0.915 1.48 1.41e- 1 -0.454 3.16
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.55 0.401 13.8 3.66e-30 4.76 6.35
2 Fertilitylow -0.198 0.539 -0.368 7.14e- 1 -1.26 0.866
3 RelationshipStatusSi… -0.720 0.797 -0.903 3.68e- 1 -2.29 0.853
4 Fertilitylow:Relatio… 1.01 1.03 0.979 3.29e- 1 -1.02 3.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.25 0.523 12.0 8.20e-23 5.22 7.29
2 Fertilitylow -0.728 0.669 -1.09 2.79e- 1 -2.05 0.596
3 RelationshipStatusSi… -1.42 0.852 -1.67 9.81e- 2 -3.10 0.266
4 Fertilitylow:Relatio… 1.54 1.09 1.42 1.59e- 1 -0.612 3.69
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.29 0.463 13.6 1.60e-30 5.38 7.21
2 Fertilitylow -0.800 0.608 -1.32 1.89e- 1 -2.00 0.398
3 RelationshipStatusSi… -1.54 0.631 -2.44 1.55e- 2 -2.78 -0.295
4 Fertilitylow:Relatio… 1.55 0.835 1.86 6.41e- 2 -0.0922 3.20
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.67 0.368 15.4 3.01e-36 4.95 6.40
2 Fertilitylow -0.225 0.493 -0.457 6.48e- 1 -1.20 0.747
3 RelationshipStatusSi… -0.817 0.731 -1.12 2.65e- 1 -2.26 0.625
4 Fertilitylow:Relatio… 1.01 0.952 1.06 2.91e- 1 -0.869 2.88
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.29 0.458 13.8 1.38e-28 5.39 7.20
2 Fertilitylow -0.800 0.601 -1.33 1.85e- 1 -1.99 0.387
3 RelationshipStatusSi… -1.44 0.769 -1.87 6.34e- 2 -2.96 0.0811
4 Fertilitylow:Relatio… 1.58 0.998 1.59 1.15e- 1 -0.388 3.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.35 0.464 13.7 1.12e-29 5.43 7.27
2 Fertilitylow -0.792 0.642 -1.23 2.19e- 1 -2.06 0.475
3 RelationshipStatusSi… -1.17 0.627 -1.86 6.42e- 2 -2.40 0.0697
4 Fertilitylow:Relatio… 0.809 0.889 0.910 3.64e- 1 -0.946 2.56
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.79 0.358 16.2 6.64e-37 5.08 6.49
2 Fertilitylow -0.438 0.526 -0.832 4.06e- 1 -1.48 0.600
3 RelationshipStatusSi… -0.343 0.753 -0.455 6.50e- 1 -1.83 1.14
4 Fertilitylow:Relatio… 0.441 1.02 0.434 6.65e- 1 -1.57 2.45
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.35 0.457 13.9 1.01e-27 5.45 7.25
2 Fertilitylow -0.792 0.632 -1.25 2.13e- 1 -2.04 0.459
3 RelationshipStatusSi… -0.905 0.792 -1.14 2.55e- 1 -2.47 0.661
4 Fertilitylow:Relatio… 0.795 1.06 0.751 4.54e- 1 -1.30 2.89
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.27 0.541 11.6 6.44e-26 5.20 7.33
2 Fertilitylow -0.270 0.608 -0.444 6.57e- 1 -1.47 0.926
3 RelationshipStatusSi… -1.74 0.709 -2.46 1.45e- 2 -3.14 -0.348
4 Fertilitylow:Relatio… 1.45 0.807 1.79 7.39e- 2 -0.141 3.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.49 0.403 13.6 3.01e-33 4.69 6.28
2 Fertilitylow 0.396 0.463 0.856 3.93e- 1 -0.514 1.31
3 RelationshipStatusSi… -0.994 0.830 -1.20 2.32e- 1 -2.63 0.639
4 Fertilitylow:Relatio… 0.860 0.940 0.915 3.61e- 1 -0.990 2.71
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.27 0.535 11.7 6.13e-25 5.21 7.32
2 Fertilitylow -0.270 0.601 -0.449 6.54e- 1 -1.45 0.914
3 RelationshipStatusSi… -1.78 0.890 -2.00 4.72e- 2 -3.53 -0.0225
4 Fertilitylow:Relatio… 1.53 1.00 1.52 1.29e- 1 -0.450 3.50
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.26 0.435 14.4 4.26e-36 5.40 7.11
2 Fertilitylow -0.300 0.529 -0.566 5.71e- 1 -1.34 0.742
3 RelationshipStatusSi… -1.16 0.586 -1.99 4.78e- 2 -2.32 -0.0114
4 Fertilitylow:Relatio… 0.776 0.720 1.08 2.82e- 1 -0.641 2.19
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.68 0.334 17.0 4.55e-46 5.02 6.34
2 Fertilitylow 0.165 0.415 0.398 6.91e- 1 -0.652 0.982
3 RelationshipStatusSi… -0.290 0.698 -0.416 6.78e- 1 -1.66 1.08
4 Fertilitylow:Relatio… -0.0394 0.844 -0.0467 9.63e- 1 -1.70 1.62
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.26 0.430 14.6 4.55e-34 5.41 7.10
2 Fertilitylow -0.300 0.523 -0.574 5.67e- 1 -1.33 0.730
3 RelationshipStatusSi… -0.867 0.739 -1.17 2.42e- 1 -2.32 0.590
4 Fertilitylow:Relatio… 0.426 0.890 0.478 6.33e- 1 -1.33 2.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.84 0.553 12.4 4.47e-25 5.75 7.93
2 Fertilitylow -1.10 0.722 -1.52 1.31e- 1 -2.52 0.329
3 RelationshipStatusSi… -2.13 0.713 -2.99 3.24e- 3 -3.54 -0.722
4 Fertilitylow:Relatio… 1.62 0.974 1.67 9.73e- 2 -0.299 3.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.15 0.432 14.2 3.22e-30 5.29 7.00
2 Fertilitylow -0.664 0.578 -1.15 2.52e- 1 -1.80 0.477
3 RelationshipStatusSi… -1.78 0.748 -2.37 1.88e- 2 -3.25 -0.298
4 Fertilitylow:Relatio… 1.82 1.09 1.67 9.68e- 2 -0.332 3.98
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.84 0.550 12.4 3.77e-23 5.75 7.93
2 Fertilitylow -1.10 0.718 -1.53 1.29e- 1 -2.52 0.325
3 RelationshipStatusSi… -2.47 0.814 -3.03 3.01e- 3 -4.08 -0.855
4 Fertilitylow:Relatio… 2.26 1.16 1.95 5.39e- 2 -0.0384 4.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.88 0.507 13.6 9.63e-30 5.88 7.88
2 Fertilitylow -1.15 0.663 -1.73 8.47e- 2 -2.46 0.159
3 RelationshipStatusSi… -2.28 0.653 -3.49 5.94e- 4 -3.57 -0.992
4 Fertilitylow:Relatio… 2.00 0.886 2.26 2.50e- 2 0.254 3.75
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.00 0.394 15.2 1.02e-34 5.22 6.77
2 Fertilitylow -0.409 0.526 -0.777 4.38e- 1 -1.45 0.629
3 RelationshipStatusSi… -1.55 0.698 -2.22 2.79e- 2 -2.92 -0.170
4 Fertilitylow:Relatio… 1.57 1.00 1.56 1.19e- 1 -0.411 3.55
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.88 0.500 13.8 1.54e-27 5.89 7.87
2 Fertilitylow -1.15 0.653 -1.76 8.09e- 2 -2.44 0.143
3 RelationshipStatusSi… -2.43 0.749 -3.25 1.46e- 3 -3.91 -0.951
4 Fertilitylow:Relatio… 2.31 1.05 2.19 3.01e- 2 0.226 4.40
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.61 0.460 14.4 1.19e-30 5.70 7.52
2 Fertilitylow -0.676 0.675 -1.00 3.18e- 1 -2.01 0.657
3 RelationshipStatusSi… -1.49 0.650 -2.29 2.34e- 2 -2.77 -0.205
4 Fertilitylow:Relatio… 0.613 0.965 0.635 5.27e- 1 -1.29 2.52
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.11 0.383 16.0 4.84e-35 5.36 6.87
2 Fertilitylow -0.552 0.562 -0.983 3.27e- 1 -1.66 0.557
3 RelationshipStatusSi… -0.984 0.757 -1.30 1.95e- 1 -2.48 0.511
4 Fertilitylow:Relatio… 0.754 1.15 0.657 5.12e- 1 -1.51 3.02
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.61 0.464 14.2 1.49e-27 5.69 7.53
2 Fertilitylow -0.676 0.681 -0.993 3.23e- 1 -2.02 0.672
3 RelationshipStatusSi… -1.48 0.798 -1.85 6.66e- 2 -3.06 0.103
4 Fertilitylow:Relatio… 0.879 1.21 0.728 4.68e- 1 -1.51 3.27
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.92 0.574 12.0 3.57e-27 5.79 8.05
2 Fertilitylow -0.870 0.646 -1.35 1.79e- 1 -2.14 0.401
3 RelationshipStatusSi… -2.02 0.753 -2.68 7.75e- 3 -3.50 -0.537
4 Fertilitylow:Relatio… 1.39 0.859 1.61 1.07e- 1 -0.304 3.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.31 0.452 14.0 5.24e-34 5.42 7.20
2 Fertilitylow -0.579 0.510 -1.14 2.57e- 1 -1.58 0.425
3 RelationshipStatusSi… -1.82 0.807 -2.26 2.49e- 2 -3.41 -0.232
4 Fertilitylow:Relatio… 1.79 0.946 1.89 5.99e- 2 -0.0754 3.65
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.92 0.562 12.3 2.55e-26 5.81 8.03
2 Fertilitylow -0.870 0.632 -1.38 1.70e- 1 -2.12 0.376
3 RelationshipStatusSi… -2.43 0.858 -2.83 5.20e- 3 -4.12 -0.733
4 Fertilitylow:Relatio… 2.08 0.999 2.08 3.87e- 2 0.109 4.05
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.445 14.7 9.08e-37 5.68 7.43
2 Fertilitylow -0.500 0.552 -0.907 3.65e- 1 -1.59 0.586
3 RelationshipStatusSi… -1.47 0.611 -2.41 1.66e- 2 -2.67 -0.270
4 Fertilitylow:Relatio… 0.807 0.759 1.06 2.89e- 1 -0.688 2.30
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.07 0.363 16.7 5.12e-44 5.36 6.78
2 Fertilitylow -0.320 0.446 -0.717 4.74e- 1 -1.20 0.558
3 RelationshipStatusSi… -1.06 0.685 -1.54 1.24e- 1 -2.41 0.291
4 Fertilitylow:Relatio… 0.866 0.870 0.995 3.21e- 1 -0.847 2.58
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.55 0.437 15.0 1.24e-34 5.69 7.42
2 Fertilitylow -0.500 0.542 -0.923 3.57e- 1 -1.57 0.569
3 RelationshipStatusSi… -1.54 0.715 -2.16 3.22e- 2 -2.95 -0.132
4 Fertilitylow:Relatio… 1.05 0.907 1.15 2.50e- 1 -0.743 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.90 0.502 13.7 1.73e-29 5.91 7.89
2 Fertilitylow -1.39 0.674 -2.07 4.02e- 2 -2.73 -0.0627
3 RelationshipStatusSi… -2.25 0.660 -3.41 8.17e- 4 -3.55 -0.945
4 Fertilitylow:Relatio… 2.31 0.927 2.49 1.36e- 2 0.481 4.14
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.86 0.393 14.9 6.74e-33 5.09 6.64
2 Fertilitylow -0.302 0.555 -0.545 5.86e- 1 -1.40 0.793
3 RelationshipStatusSi… -0.975 0.752 -1.30 1.96e- 1 -2.46 0.508
4 Fertilitylow:Relatio… 0.885 1.06 0.833 4.06e- 1 -1.21 2.98
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.90 0.507 13.6 1.37e-26 5.90 7.90
2 Fertilitylow -1.39 0.681 -2.05 4.27e- 2 -2.74 -0.0468
3 RelationshipStatusSi… -2.01 0.808 -2.49 1.41e- 2 -3.61 -0.413
4 Fertilitylow:Relatio… 1.98 1.12 1.76 8.01e- 2 -0.240 4.19
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.92 0.440 15.7 7.12e-37 6.05 7.79
2 Fertilitylow -1.36 0.613 -2.21 2.81e- 2 -2.56 -0.147
3 RelationshipStatusSi… -2.19 0.592 -3.69 2.87e- 4 -3.35 -1.02
4 Fertilitylow:Relatio… 2.06 0.845 2.44 1.57e- 2 0.392 3.73
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.06 0.350 17.3 1.05e-41 5.37 6.75
2 Fertilitylow -0.520 0.501 -1.04 3.01e- 1 -1.51 0.468
3 RelationshipStatusSi… -1.33 0.690 -1.92 5.58e- 2 -2.69 0.0331
4 Fertilitylow:Relatio… 1.20 0.986 1.22 2.24e- 1 -0.742 3.15
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.92 0.440 15.7 3.27e-33 6.05 7.79
2 Fertilitylow -1.36 0.613 -2.21 2.87e- 2 -2.57 -0.143
3 RelationshipStatusSi… -2.19 0.729 -3.01 3.09e- 3 -3.63 -0.753
4 Fertilitylow:Relatio… 2.04 1.03 1.97 5.02e- 2 -0.00177 4.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.73 0.476 14.1 3.26e-30 5.79 7.67
2 Fertilitylow -1.27 0.681 -1.87 6.36e- 2 -2.62 0.0730
3 RelationshipStatusSi… -1.51 0.648 -2.33 2.08e- 2 -2.79 -0.233
4 Fertilitylow:Relatio… 1.32 0.956 1.38 1.68e- 1 -0.564 3.21
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.12 0.384 15.9 4.21e-35 5.36 6.88
2 Fertilitylow -0.681 0.567 -1.20 2.32e- 1 -1.80 0.439
3 RelationshipStatusSi… -0.748 0.734 -1.02 3.09e- 1 -2.20 0.700
4 Fertilitylow:Relatio… 0.483 1.08 0.445 6.57e- 1 -1.66 2.63
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.73 0.482 14.0 3.53e-27 5.78 7.69
2 Fertilitylow -1.27 0.691 -1.84 6.79e- 2 -2.64 0.0952
3 RelationshipStatusSi… -1.36 0.790 -1.72 8.82e- 2 -2.92 0.206
4 Fertilitylow:Relatio… 1.07 1.15 0.930 3.54e- 1 -1.21 3.36
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.93 0.519 13.4 8.04e-32 5.91 7.95
2 Fertilitylow -0.942 0.600 -1.57 1.18e- 1 -2.12 0.240
3 RelationshipStatusSi… -2.35 0.702 -3.36 9.01e- 4 -3.74 -0.973
4 Fertilitylow:Relatio… 1.91 0.818 2.34 2.02e- 2 0.301 3.52
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.97 0.415 14.4 1.70e-35 5.15 6.79
2 Fertilitylow -0.150 0.482 -0.312 7.55e- 1 -1.10 0.799
3 RelationshipStatusSi… -1.22 0.803 -1.52 1.30e- 1 -2.80 0.362
4 Fertilitylow:Relatio… 0.975 0.944 1.03 3.03e- 1 -0.884 2.83
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.93 0.511 13.6 3.34e-30 5.92 7.94
2 Fertilitylow -0.942 0.591 -1.59 1.13e- 1 -2.11 0.224
3 RelationshipStatusSi… -2.18 0.839 -2.60 1.01e- 2 -3.84 -0.526
4 Fertilitylow:Relatio… 1.77 0.983 1.80 7.40e- 2 -0.173 3.71
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.86 0.443 15.5 1.87e-39 5.99 7.73
2 Fertilitylow -0.969 0.550 -1.76 7.89e- 2 -2.05 0.113
3 RelationshipStatusSi… -1.68 0.608 -2.76 6.07e- 3 -2.88 -0.485
4 Fertilitylow:Relatio… 1.13 0.756 1.49 1.36e- 1 -0.359 2.62
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.16 0.360 17.1 2.34e-45 5.45 6.87
2 Fertilitylow -0.460 0.445 -1.03 3.02e- 1 -1.34 0.416
3 RelationshipStatusSi… -0.716 0.693 -1.03 3.03e- 1 -2.08 0.649
4 Fertilitylow:Relatio… 0.296 0.874 0.338 7.35e- 1 -1.42 2.02
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.86 0.435 15.8 5.29e-37 6.00 7.72
2 Fertilitylow -0.969 0.540 -1.80 7.39e- 2 -2.03 0.0947
3 RelationshipStatusSi… -1.41 0.720 -1.96 5.09e- 2 -2.83 0.00546
4 Fertilitylow:Relatio… 0.805 0.907 0.888 3.76e- 1 -0.983 2.59
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.62 0.573 11.6 1.98e-22 5.49 7.75
2 Fertilitylow -0.947 0.741 -1.28 2.03e- 1 -2.41 0.518
3 RelationshipStatusSi… -2.10 0.756 -2.78 6.23e- 3 -3.59 -0.604
4 Fertilitylow:Relatio… 1.81 1.01 1.79 7.52e- 2 -0.186 3.82
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.73 0.445 12.9 6.04e-26 4.85 6.61
2 Fertilitylow -0.300 0.602 -0.498 6.19e- 1 -1.49 0.890
3 RelationshipStatusSi… -1.17 0.864 -1.35 1.78e- 1 -2.88 0.537
4 Fertilitylow:Relatio… 1.55 1.15 1.35 1.80e- 1 -0.725 3.82
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.62 0.566 11.7 5.01e-21 5.50 7.74
2 Fertilitylow -0.947 0.732 -1.29 1.99e- 1 -2.40 0.505
3 RelationshipStatusSi… -2.06 0.915 -2.26 2.60e- 2 -3.88 -0.252
4 Fertilitylow:Relatio… 2.20 1.20 1.83 7.00e- 2 -0.182 4.57
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.58 0.495 13.3 4.20e-28 5.60 7.56
2 Fertilitylow -0.976 0.663 -1.47 1.43e- 1 -2.28 0.332
3 RelationshipStatusSi… -2.04 0.687 -2.97 3.38e- 3 -3.40 -0.686
4 Fertilitylow:Relatio… 1.91 0.930 2.05 4.19e- 2 0.0710 3.74
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.84 0.405 14.4 2.49e-31 5.04 6.64
2 Fertilitylow -0.351 0.549 -0.640 5.23e- 1 -1.44 0.733
3 RelationshipStatusSi… -1.25 0.804 -1.56 1.21e- 1 -2.84 0.334
4 Fertilitylow:Relatio… 1.45 1.08 1.34 1.83e- 1 -0.688 3.58
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.58 0.492 13.4 5.03e-26 5.61 7.55
2 Fertilitylow -0.976 0.658 -1.48 1.41e- 1 -2.28 0.327
3 RelationshipStatusSi… -2.00 0.837 -2.38 1.86e- 2 -3.65 -0.339
4 Fertilitylow:Relatio… 2.07 1.12 1.85 6.73e- 2 -0.149 4.29
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.512 12.8 1.31e-25 5.53 7.55
2 Fertilitylow -0.801 0.714 -1.12 2.64e- 1 -2.21 0.611
3 RelationshipStatusSi… -1.47 0.701 -2.10 3.75e- 2 -2.86 -0.0861
4 Fertilitylow:Relatio… 0.893 1.00 0.892 3.74e- 1 -1.09 2.87
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.91 0.406 14.6 2.56e-30 5.11 6.71
2 Fertilitylow -0.493 0.593 -0.833 4.06e- 1 -1.66 0.678
3 RelationshipStatusSi… -0.669 0.839 -0.797 4.27e- 1 -2.33 0.989
4 Fertilitylow:Relatio… 0.798 1.15 0.691 4.91e- 1 -1.48 3.08
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.54 0.508 12.9 1.06e-23 5.53 7.54
2 Fertilitylow -0.801 0.708 -1.13 2.61e- 1 -2.20 0.603
3 RelationshipStatusSi… -1.30 0.879 -1.47 1.43e- 1 -3.04 0.446
4 Fertilitylow:Relatio… 1.11 1.20 0.921 3.59e- 1 -1.27 3.48
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.47 0.577 11.2 4.65e-24 5.33 7.61
2 Fertilitylow -0.303 0.650 -0.466 6.42e- 1 -1.58 0.978
3 RelationshipStatusSi… -2.23 0.768 -2.90 3.99e- 3 -3.74 -0.718
4 Fertilitylow:Relatio… 1.78 0.876 2.03 4.33e- 2 0.0540 3.50
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.56 0.443 12.6 1.46e-28 4.69 6.43
2 Fertilitylow 0.406 0.507 0.801 4.24e- 1 -0.592 1.40
3 RelationshipStatusSi… -1.45 0.901 -1.61 1.09e- 1 -3.22 0.325
4 Fertilitylow:Relatio… 1.34 1.03 1.30 1.95e- 1 -0.689 3.36
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.47 0.571 11.3 5.15e-23 5.34 7.60
2 Fertilitylow -0.303 0.644 -0.470 6.39e- 1 -1.57 0.967
3 RelationshipStatusSi… -2.36 0.956 -2.47 1.45e- 2 -4.24 -0.473
4 Fertilitylow:Relatio… 2.04 1.09 1.88 6.11e- 2 -0.0962 4.18
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.473 13.5 5.40e-32 5.48 7.34
2 Fertilitylow -0.259 0.575 -0.451 6.52e- 1 -1.39 0.872
3 RelationshipStatusSi… -1.43 0.644 -2.23 2.68e- 2 -2.70 -0.166
4 Fertilitylow:Relatio… 0.822 0.790 1.04 2.99e- 1 -0.734 2.38
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.77 0.371 15.5 6.41e-39 5.03 6.50
2 Fertilitylow 0.161 0.458 0.353 7.25e- 1 -0.740 1.06
3 RelationshipStatusSi… -0.558 0.764 -0.730 4.66e- 1 -2.06 0.947
4 Fertilitylow:Relatio… 0.200 0.932 0.215 8.30e- 1 -1.63 2.04
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
# A tibble: 4 × 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.41 0.468 13.7 4.83e-30 5.48 7.33
2 Fertilitylow -0.259 0.569 -0.456 6.49e- 1 -1.38 0.863
3 RelationshipStatusSi… -1.20 0.804 -1.49 1.37e- 1 -2.79 0.386
4 Fertilitylow:Relatio… 0.621 0.977 0.635 5.26e- 1 -1.31 2.55
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
p_val <- round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val <- paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single"
)) %>%
summarise(
.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop"
) %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) +
geom_bar(
stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5
) +
geom_linerange(aes(
ymin = .lower,
ymax = .upper
), position = position_dodge(width = 0.5)) +
geom_text(label = paste0(
"Interaction:",
p_val
), x = 1.5, y = 7.5, colour = "#666666") +
labs(
x = "RelationshipStatus",
y = "ReligiosityCompositeScore"
) +
ylim(c(0, 8.1)) +
theme_minimal()
The current section describes how the remaining three JSON files can
be created. If you haven’t already, the first step would be to execute
all the analyses declared in the multiverse using
execute_multiverse()
:
execute_multiverse(M)
We can then use dedicated functions for each of the JSON files: -
export_results_json
or
export_results_dist_json
. -
export_code_json
We provide two functions to export the results:
export_results_json
and
export_results_dist_json
. export_results_json
requires the user to specify the following arguments:
term
: column name which contains the names of the
outcome variables. For example, in the case of a regression, you could
use the output of broom::tidy()
and thus the argument would be the column which contains the coefficient
names.estimate
: column name containing the mean / median
point estimates for each outcome.standard error
: column name containing the standard
errors for each outcome.dist
: column name containing distributional objects for
each outcome variable. Optional only if
estimate
and standard error
arguments are
provided. See below for more details.filename
: if specified, the function will
create a file in the specified path; if not specified, it will return
the dataframe as shown below:expand(M) %>%
extract_variables(summary_RelComp) %>%
unnest( cols = c(summary_RelComp) ) %>%
mutate( term = recode( term,
"RelationshipStatusSingle" = "Single",
"Fertilitylow:RelationshipStatusSingle" = "Single:Fertility_low"
)) %>%
export_results_json(term, estimate, std.error) |>
unnest(results) |>
select(.universe, term, estimate, std.error, cdf.x, cdf.y)
## # A tibble: 960 × 6
## .universe term estimate std.error cdf.x cdf.y
## <int> <chr> <dbl> <dbl> <list> <list>
## 1 1 (Intercept) 6.37 0.405 <dbl [101]> <dbl [101]>
## 2 1 Fertilitylow -1.16 0.534 <dbl [101]> <dbl [101]>
## 3 1 Single -1.51 0.538 <dbl [101]> <dbl [101]>
## 4 1 Single:Fertility_low 2.05 0.714 <dbl [101]> <dbl [101]>
## 5 2 (Intercept) 5.78 0.322 <dbl [101]> <dbl [101]>
## 6 2 Fertilitylow -0.583 0.428 <dbl [101]> <dbl [101]>
## 7 2 Single -0.859 0.583 <dbl [101]> <dbl [101]>
## 8 2 Single:Fertility_low 1.85 0.772 <dbl [101]> <dbl [101]>
## 9 3 (Intercept) 6.37 0.402 <dbl [101]> <dbl [101]>
## 10 3 Fertilitylow -1.16 0.531 <dbl [101]> <dbl [101]>
## # ℹ 950 more rows
The resultant JSON file consists of a list of objects (where each object corresponds to one analysis in the multiverse). Within this object, the results attribute contains a(nother) list of objects corresponding to each outcome variable. For e.g., here we have four coefficients (see the results of the regression model), and thus the results attribute will contain four objects. Each object has the following attributes:
term
: name of the outcome variableestimate
: mean / median point estimate i.e., \(\mathbb{E}(\mu)\) for any parameter \(\mu\).std.error
: standard error for the point estimate i.e.,
\(\sqrt{\text{var}(\mu)}\)cdf.x
: a list of quantilescdf.y
: a list of cumulative probability density
estimates corresponding to the quantilesIn addition, it also contains the following attributes, but these are not currently used by Milliways:
statistic
p.value
conf.low
conf.high
For simplicity, we assume that each of the outcome variables follow a
normal distribution. However, this may not always be the case. In this
case, we recommend that you should specify the dist
argument to export_results_json
or use the
export_results_dist_json
which allows you to specify distributional
objects for each outcome. We demonstrate how a user can do this with the
following example of a multiverse analysis where the results consists of
two parameters: \(\mu \sim \text{N}(0,
1)\), a normally distributed random variable and \(\sigma \sim \text{exp}(1)\), a random
variable which follows the exponential distribution.
expand_grid(
.universe = seq(1:5),
nesting(
term = c("mu", "sigma"),
dist = c(dist_normal(0, 1), dist_exponential(1))
)
) |>
export_results_dist_json(term, dist) |>
unnest(results)
## # A tibble: 10 × 5
## .universe term dist cdf.x cdf.y
## <int> <chr> <dist> <list> <list>
## 1 1 mu N(0, 1) <dbl [101]> <dbl [101]>
## 2 1 sigma Exp(1) <dbl [101]> <dbl [101]>
## 3 2 mu N(0, 1) <dbl [101]> <dbl [101]>
## 4 2 sigma Exp(1) <dbl [101]> <dbl [101]>
## 5 3 mu N(0, 1) <dbl [101]> <dbl [101]>
## 6 3 sigma Exp(1) <dbl [101]> <dbl [101]>
## 7 4 mu N(0, 1) <dbl [101]> <dbl [101]>
## 8 4 sigma Exp(1) <dbl [101]> <dbl [101]>
## 9 5 mu N(0, 1) <dbl [101]> <dbl [101]>
## 10 5 sigma Exp(1) <dbl [101]> <dbl [101]>
Exporting the code file is relatively simple as the only arguments that need to be provided are the multiverse object and file path:
export_code_json(M, "code.json")
The JSON file consists of two attributes: code
and
parameters
. code
is a list of strings
consisting of the R and multiverse syntax used to implement the
analysis. For readability, we use styler to break up the declared
code. parameters
is an object listing the parameter names
and the corresponding options for each of the parameters declared in the
analysis.
This function is used to export the (unmodified) dataset that is used
in the analysis, and is a simple wrapper around the
write_json
function.
export_data_json(durante, "data.json")
The JSON file consists of a list of objects, each with two
attributes: field
and values
.
field
is the name of a column corresponding to a variable
in the dataset. values
are a list of values for that
variable in the dataset.