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ABSTRACT
Bayesian statistical analysis is steadily growing in popular-
ity and use. Choosing priors is an integral part of Bayesian
inference. While there exist extensive normative recommen-
dations for prior setting, little is known about how priors are
chosen in practice. We conducted a survey (N = 50) and in-
terviews (N = 9) where we used interactive visualizations to
elicit prior distributions from researchers experienced with
Bayesian statistics and asked them for rationales for those
priors. We found that participants’ experience and philosophy
influence how much and what information they are willing to
incorporate into their priors, manifesting as different levels of
informativeness and skepticism. We also identified three broad
strategies participants use to set their priors: centrality match-
ing, interval matching, and visual probability mass allocation.
We discovered that participants’ understanding of the notion
of “weakly informative priors”—a commonly-recommended
normative approach to prior setting—manifests very differ-
ently across participants. Our results have implications both
for how to develop prior setting recommendations and how to
design tools to elicit priors in Bayesian analysis.
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INTRODUCTION
Bayesian statistical analysis has gained attention in recent
years as an alternative to the traditional frequentist, or null
hypothesis significance testing (NHST) approaches. This is
partly because traditionally computationally expensive anal-
yses, such as Markov Chain Monte Carlo (MCMC) sam-
pling, have become more accessible: the increase in com-
putational power now allow users to run such analyses using
their personal computers. A growing number of modelling
languages and software packages such as Stan [4], brms [3],
rstanarm [40], and JAGs [43] also support Bayesian statistical
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analysis using notations that are closer to the way that sta-
tistical models are written mathematically (sometimes called
probabilistic programming languages), allowing more users
of varying skill levels to implement Bayesian analysis.

Another factor could be the growing calls for a focus on esti-
mation instead of hypothesis testing [7, 37], as the Bayesian
approach allows us to interpret results in terms of probabili-
ties of particular effect sizes (conditional on prior knowledge),
which traditional approaches do not [8,24]. Further, it provides
a principled mechanism for researchers to build on previous re-
search by incorporating relevant prior information and domain
knowledge into the analysis. This can be crucial in studies
with small sample sizes, as prior information can be used to
regularize results, reducing the chances of obtaining unrealisti-
cally large effect sizes due to chance—a phenomenon common
in individual studies with relatively small sample sizes [27].
In HCI, small sample studies are abundant, and researchers
have advocated the adoption of Bayesian methods as it allows
for “more principled conclusions from small-n studies” [31].

Phelan et al.’s [42] work shows that certain technological inter-
ventions might help introduce users familiar with frequentist
statistics to Bayesian methods. However, in their study, partic-
ipants had difficulty grasping the concept of priors and speci-
fying prior distributions. Though they mention that the prior
distributions chosen by their participants were “reasonable”,
what constitutes a reasonable prior is difficult to define. The
promised benefits of Bayesian analysis are partly contingent
on specifying good priors, especially in smaller samples.

Since the choice of reasonable priors is dependent on factors
such as the design of the experiment, data collection method,
and the statistical model used for data analysis, specifying
priors is an inherently a difficult task, especially for novices—
Interactive prior elicitation interfaces could encode normative
guidance in prior selection to better support this task. Existing
literature offers such normative guidance, but little is known
about how people with expertise in Bayesian statistical mod-
elling choose priors in practice. Such descriptive knowledge
could inform the development of interfaces for prior-setting
designed for both experts and novices alike.

As a probe into existing prior-setting practice, we conducted
two studies, an online survey and follow-up interviews. In
both the studies, we presented participants with a common
statistical model and elicited priors for that model.

We find that many participants set what they considered to be
weakly informative priors, a class of prior recommended in the



Bayesian literature [16, 39]. However, the actual priors these
participants set varied widely, suggesting there may not be a
common understanding of how to implement them in practice.
We discuss ways that normative material on weakly infor-
mative priors could be improved through explicitly teaching
strategies used by experts in prior setting.

We identify a range of informativeness and skepticism philoso-
phies that affect how participants approach prior-setting, along
with three high-level strategies that researchers use to choose
priors: centrality matching, interval matching and visual prob-
ability mass allocation. We find that different strategies might
be used with different visualizations, so if we show a different
visualization people might switch to a better strategy. We
discuss how explicitly representing prior philosophies and
matching strategies could aid in prior elicitation.

BACKGROUND
A number of recent papers describe advantages of adopting
Bayesian inference methods, both in the social sciences [2, 8,
24, 35, 36] and in HCI [31, 42]. Since these arguments have
been discussed in detail in previous literature, we instead focus
on the role of priors in Bayesian inference, choice of prior
types, and the effect of different elicitation techniques.

What is the role of priors in Bayesian inference?
Bayesian inference is a “reallocation of credibility across pos-
sibilities”, where the “possibilities” are parameters in a statisti-
cal model [34]; it consists of declaring our initial assumptions
regarding the parameters as probability distributions (priors)
and a likelihood function, and using the observed data to up-
date these probability distributions (posteriors).

When large samples of data have been collected, and when
the effects that are being estimated are large, the impact of
priors on the resulting inferences may not be high. However,
if the underlying effects or the sample size is small, prior
distributions can have a critical effect on inferences [19]. Yet
the choice of a prior for a Bayesian analysis is not always clear,
and guidance in how to do so in a principled way varies.

What are the different kinds of prior distributions?
One categorization of prior types in the literature uses infor-
mativeness to describe priors (Figure 1):

• Objective or non-informative priors affect information in
the likelihood as weakly as possible; often these are flat,
improper priors or bounded, uniform priors.

• Weakly informative priors are proper priors which are set
up so that the information they provide are intentionally
weaker than whatever actual prior knowledge is available;
that is, these priors do not take full advantage of domain
specific information [18, 46]. These priors try to regularise
inferences which are unlikely based on domain knowledge
or experiment design. Hence, if the data is sufficiently
informative, the likelihood will dominate in the posterior,
but if the data is weak, a weakly informative prior will
influence the posterior.

• Informative priors represent all available relevant informa-
tion about the problem known before seeing the data.

The choice of prior type is often a philosophical one. Some
advocate for non-informative priors to minimize the amount
of “subjectivity” injected into the analysis [1, 29]. Others
argue that statistical analyses are inherently subjective [12,17],
suggesting that the use uniform or diffuse priors—under the
illusion of objectivity—is inappropriate. Gelman et al. [19]
advocate for priors that can generate data that is consistent
with researcher’s understanding of the problem and which
yield a model with good predictive performance.

The notion of weakly informative priors [10, 15, 16, 44] has
been widely adopted by applied researchers. While Gelman et
al. provide a set of principles for setting weakly informative
priors [14], it is not known how applied researchers actually
put such normative guidance into practice.

How do we elicit probability distributions?
Elicitation of expert1 knowledge in probabilistic form is a
problem with broad applications in fields such as psychology,
decision theory, risk assessment, and statistics [41]. Elici-
tation of expert priors is not easy, and is rarely completely
accurate [22,48]. Good elicitation techniques help researchers
represent their prior knowledge as probability distributions
which are coherent and, as much as possible, devoid of bias
and poor judgement [41]. Several characteristics of the elicita-
tion task can impact the quality of judgements.

Number of variables involved. Eliciting univariate distribu-
tions is easier than multivariate distributions, where analysts
need to consider joint probabilities for all variables. People
exhibit systematic bias when making joint probability assess-
ments [41]. In our study, we present a generalised linear model
with two parameters: intercept and mean difference. This is
perhaps the most common parameterisation of such models.

Frequency framing. As shown by cognitive psychologists [20,
23], people often find it easier to reason in frequency for-
mats (e.g. 10-in-100 instead of 10%) or in the form of
discrete outcomes. In HCI, frequency formats, discrete
outcome and probability representations have been applied
to improve inferences and decision making from visualiza-
tions [11, 21, 25, 26, 30, 32, 33].

Graphical vs textual elicitation. Textual elicitation, which
is common, can involve asking an expert for median, and
lower and upper quartiles of a distribution [41]. Often more
quantiles are elicited, and a parametric probability density
function is fitted to the estimates. However, Goldstein et
al. [21] show that graphical interfaces—asking users to draw a
histogram—can be substantially more accurate than quantile-
based methods [38] at eliciting univariate probability distribu-
tions. Several studies in HCI have explored different graphical
techniques for eliciting prior beliefs from Turkers, either to pro-
mote Bayesian reasoning or do Bayesian modeling [32,33,49].
Kim et al. [33] found that certain graphical elicitation tech-
niques improved Turkers’ Bayesian reasoning when presented
with new information. This suggests that asking users to rep-
resent their prior beliefs as visualizations can improve the
quality of elicitation.
1In the elicitation literature, the ‘expert’ is the person whose knowl-
edge is to be elicited; we use ‘user’ and ‘expert’ interchangeably.
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Uninformative priors
Flat, improper prior *
Unbounded prior which assigns uniform mass to all positive values (the default when no 
prior is specified for a parameter in Stan). Users might use this to indicate they have no 
prior beliefs

Uniform(0, 128) on the response / outcome scale *
P( x > 128) = 0; A uniform prior on the response scale requires either reparameterising 
the model (a Poisson model without a log link function), or calculate inverse-log of the 
PDF of this distribution. This considers more information about the experiment design.

Student’s-t(df = 3, 4, 1) on the log scale
P( x > 128) = 0.23; The most diffuse prior possible in our interface. Although not 
“uninformative”, it does not try to constrain the model to reasonable values either. Few 
participants chose this prior

Normal(3.6, 0.4) on the log scale
P(x > 128) = 0.0009; This is fairly constrained and predicts very little mass above 128, 
but is skewed, with less mass above 64. Several participants (~9) chose very similar 
priors (of both student’s t or normal families) where location was 3.4 - 3.7 and scale was 
around 0.3-0.5. Few interviewees mentioned that they disliked the skewness.

Skew−Normal(4.2, 0.7, −5) on the log scale *
P(x > 128) < 2.7 x 10-8; Predicts very little mass above 128, is more symmetrical and not 
skewed towards smaller values; this is one way of addressing concerns raised with the 
previous prior

Informative prior
Normal(3.5, 0.2) on the log scale
P(x > 128) = 0; This can be considered an informative prior. It is extermely constrained 
and predicts almost no mass for values less than 16 or greater 64, which are very close 
to the meta anlysis estimates of the mean (across conditions) being between 24.6-44.1
Few (N = 7) participants chose such a prior in the survey (location ~ 3.5 and scale ~ 
0.2-0.3).

Uniform(−2.3, 2.3) on the log scale *
Besides Improper priors, bounded uniform priors with equal probability mass for all 
effect sizes between 1/10x and 10x are also uninformative. One interviewee commented 
that they would choose such a prior which encompasses all “reasonable” effect sizes.

Normal(0, 1) on the log scale
Commonly chosen in the survey, this assigns substantial probability mass to effect sizes 
less than 1/5x or greater than 5x. 15 participants chose a zero-centered  (student’s t or 
normal) prior with scale = 1 to be permissive of  all reasonable effect sizes

Normal(0, 0.5) on the log scale
Another commonly used prior, this perhaps only incorporates little skepticism and 
information as substantial probability mass is assigned to effect sizes less than 1/3x or 
greater than 3x. 7 people chose priors (from either family) with scale values of 0.5-0.6

Normal(0, 0.1) on the log scale *
Skeptical and informative prior. Some participants commented that effect sizes of 1/2x or 
2x are still very unlikely, and some interviewees mentioned that they would set a 
narrow, skeptical prior such as this, to regularise inferences. 5 participants in the survey 
chose the most skeptical option possible: Normal(0, 2).

Normal(0.2, 0.1) on the log scale *
An informative prior; meta-analysis indicates that power poses might have a 
standardised effect size of 0.2. This would indicate strong prior belief that a small effect 
exists.

Weakly Informative priors
Truncated-Normal(64, 32, lb = 0, ub = 128) on the outcome scale *
P7 metioned that for choosing a parameter on a response scale, “may be tempted to 
use a truncated normal on the response scale... but perhaps won’t for convenience 
reasons.”
This distribution is bounded, and hence does not need the log-link function, making it 
easier to interpret on the response scale. 

Uninformative priors

Weakly Informative priors

Informative priors

Priors on difference (beta)

Priors on intercept (alpha)

Figure 1. Information that may be taken into account when different levels of priors are defined. We compare some of the normative levels of priors
with what priors participants in our studies have chosen.

METHOD
To perform a descriptive analysis of the prior-setting process
we elicit prior distributions for parameters of a statistical
model in two separate studies: a survey and a set of inter-
views. Through the survey we wanted to elicit priors for the
described model, understand broad prior setting strategies, and
investigate how different visualisations of the prior affect the

elicited prior. We then investigated these issues more deeply
with specific participants in the interviews.

In both studies, we presented participants with the same model
and experiment design. We wanted to probe specific issues
common in HCI and applied statistical analyses, such as typi-
cal GLM parameterisations and the impact of non-linear link
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Figure 2. Different types of visualizations used for prior elicitation

functions. Allowing participants to pick a model from their
own work (which we considered) would not guarantee their
chosen model would have these properties. Providing a com-
mon model was a compromise that allowed us to easily com-
pare priors and prior-setting strategies across participants, with
some reduction in ecological validity. To elicit priors, we
use three different interactive visualizations of the probabil-
ity density of the priors. All the materials used in this study,
data collected and analysis performed are available online at
https://osf.io/pzu9g/

Contextual information presented to participants
In both the studies, we presented participants with the design
of an experiment conducted by Jansen & Hornbaek [28]:

Jansen & Hornbaek performed an experiment to examine
the effect of different incidental power poses on risk-
taking behavior. They used the Balloon Analogous Risk
Task (BART), which is a standard test in Psychology, to
measure people’s risk-taking behavior in the form of a
game. The task was administered through a digital in-
terface. The basic task in BART is to pump up a virtual
balloon using on-screen buttons. With each pump, the bal-
loon grows a bit and the player gains a point, which are
linked to monetary rewards — the more the players pump
up the balloons, the higher their payoff. The maximum
size of a balloon is reached after 128 pumps. The risk
is introduced through a random, uniformly distributed,
point of explosion for each balloon with the average and
median explosion point at 64 pumps. The optimal strat-
egy to maximise payoff is to perform 64 pumps. Each
participant repeats this 30 times.

We also provided participants with the results of a meta-
analysis of BART studies. Results from meta-analyses can
be relevant information that a researcher or analyst might use
during prior setting. Participants could use none, some or all
of this information while choosing their priors, depending on
how informed a prior they might wish to set.

A meta-analysis of 22 studies which used the BART task
found that the average number of pumps (averaged across

conditions) to vary between 24.60 to 44.10 (out of 128
total possible pumps), with a weighted standard devia-
tion of 5.93. This means that based on prior studies, on
average, participants in the BART task are most likely to
be risk-averse.

We also described the model to be used for data analysis:

The data will be analysed using a Poisson regression
model: the outcome variable will be the number of pumps
by the participant, and the predictor will be a (categori-
cal) dummy variable indicating which condition the par-
ticipant is in.

pumpsi ∼ Poisson(λi)

log(λi) = α +β × conditioni

where, conditioni has two levels: 0 for the constrictive
condition, and 1 for the expansive condition.

Interactive visualization and prior elicitation
We presented participants with interactive visualizations to aid
them in choosing a prior. We visualized the prior in three dif-
ferent ways: parameter scale density visualization, response
scale density visualization, prior predictive density visualiza-
tion (see Figure 2). Although these three visualization types
are not exhaustive, parameter scale density visualizations and
prior predictive density visualizations are commonly used for
interpreting priors [13]. We have not come across examples
of the use of response scale density visualizations, but in our
example the transformation simply results in a log-normal or
log-t distribution with a natural interpretation on the response
scale.

We adopted and extended the technique used by Dragicevic
et al. [9] to create the interactive visualizations. We explore
a different form of elicitation to the techniques than the ones
discussed previously, where the user interacts with a widget
(Figure 4) to change the location and scale values of a Stu-
dent’s t or a Gaussian distribution—two commonly used prior
distributions for parameters in generalised linear models; the
corresponding prior is visualized using three different rep-
resentations (Figure 2). We also provide, in text, the exact

https://osf.io/pzu9g/


location and scale values that the user has set. We chose this
elicitation interface because prior probability distributions are
commonly parameterised using location (e.g. mean/median)
and scale (e.g. standard deviation). The brms statistical mod-
elling package [3] (an R package for specifying Bayesian
models), for example, allows the specification of priors with
syntax like normal(0,1) for a Gaussian prior with mean 0
and standard deviation 1, or student_t(3, 0, 1) for a Stu-
dent’s t distribution with 3 degrees of freedom, median 0, and
scale 1. Another R package for Bayesian statistical modelling,
rstanarm [40], follows a similar syntax.

Survey

Stimuli
The survey was a controlled study with three pages. Visual-
ization type was manipulated between subjects. 2. The first
page (onboarding page) introduced participants to the hypo-
thetical experiment design, information from previous studies,
and the statistical model; it then introduced participants to the
interactive visualizations. Participants had to choose priors for
both the parameters in the model: α and β . For each parame-
ter, participants were shown two visualizations (normal and
Student’s t) and were encouraged to explore the visualizations
before proceeding to the second page.

The second page (elicitation page) presented participants with
two interactive visualizations (one for each parameter) and
a show description button which expanded a collapsible text
container repeating information about the experiment design,
previous studies, and the statistical model. On this page, par-
ticipants set their choice of priors for both the parameters
in the model, α and β . For each parameter, they could tog-
gle between the Student’s t or normal distributions using a
drop-down menu.

The third and final page consisted of eleven fields, of which
one was optional. We asked participants to report if they have
ever completed a statistical analysis in the past, what statistical
software they usually use, their knowledge of this software,
their confidence in their choice of priors, and their knowledge
of statistics and of Bayesian statistics. We asked participants
to describe the strategy used to set the priors, and how they
perceived their priors would affect the model. We used these
free textual responses and the elicited prior distributions to
examine the broad strategies that researchers might be using
to specify prior distributions.

Participants
We recruited participants through convenience sampling. Both
the authors used Twitter to send out links to the survey (one
author maintains software for the visualization of Bayesian
results and has a number of followers on Twitter who reg-
ularly use Bayesian modelling). We also posted the link to
the Transparent Statistics in HCI Slack channel.3 We did not
compensate participants for participation to ensure that partic-
ipants were not fiscally motivated to participate in our survey

2surveys used in the study can be found in the supplementary materi-
als
3https://transparentstatistics.org/

and increase the chance that participants were from the target
audience: users of Bayesian statistical modelling.

We received a total of 50 responses. All participants reported
that they had previously conducted a statistical analysis inde-
pendently. Figure 3 shows reported levels of experience in
different categories. Almost all participants indicated that they
were moderate to extremely knowledgeable with statistics and
the use of statistical software of their choice; a majority of the
participants indicated they were moderate to extremely knowl-
edgeable with Bayesian statistics. This suggests we were able
to sample from the desired audience.

Analysis
As preregistered,4 we wanted to understand the information
that was considered while choosing priors and the broad prior
setting strategies used, through exploratory and descriptive
analysis of the data. Hence, any findings from this analysis
should be interpreted qualitatively.

Our analysis method is informed by grounded theory [6]; once
the data collection for the survey was completed, the first
author used open coding to identify major categories in the
data (responses to the free text questions). Whenever the first
author was unsure about coding a response, the second author
was consulted and the code was discussed until it was resolved;
if the response was vague or ambiguous such that neither au-
thor could generate a code for it, it was left uncoded. We then
clustered the generated codes to identify high-level themes and
categories: specifically, strategies described by participants
and the consequences of those strategies (the elicited prior
distributions).

Interviews
Procedure and Stimuli
We conducted follow-up interviews with nine survey partici-
pants. We followed a semi-structured interview protocol which
4 https://aspredicted.org/qw2py.pdf
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varied based on participants’ responses. First, we provided an
overview of the study to the participants. We requested partici-
pants share their screen and acquired consent for participation
and audio/screen recording. To create a basis for discussion,
we created a three-page HTML document for each participant
to look at during the interview, and shared an online link to it,
requesting participants to open the link.

The first page was the same as the the elicitation page of the
survey, showing the same visualizations that participants were
shown in the survey. It indicated what prior that participant
had set in the survey. This allowed a starting point for the
participant to re-acquaint themselves with the visualization
and their elicited prior. We prompted participants to think
aloud while they were interacting with the visualizations and
asked them to walk us through the decisions which led them
to their choice of prior (that they chose in the survey).

The second page consisted of the three different interactive
visualizations for the mean difference parameter, α . Here, we
introduced participants to the two types of visualizations that
they had not seen in the survey. Participants were asked to
interact with these visualizations and to describe how they
would choose a prior distribution for α using each of the two
visualizations. Participants were also asked to compare their
prior setting process under the different visualizations, and to
describe what information they used (or might want to use)
when setting their priors.

The third page consisted of the three interactive visualizations
for the mean difference parameter, β . As in the second page,
participants were introduced to the two visualizations that
were unfamiliar and asked to describe how they would choose
a prior distribution for β using the two new visualizations.

Analysis
We transcribed the interviews using a professional service.
We followed a similar analysis process to that of the survey:

the first author used open coding to generate codes from the
transcript. The two authors discussed the codes until any dis-
crepancies were resolved. The first author used these codes to
find thematic clusters of decision-making strategies, rationales,
and information considered. This was done iteratively until
we reached a point of inductive thematic saturation [45, 47]:
the point when no “new” theoretical insights can be gained
from the data [45]. The high-level themes were then discussed
by both authors and insights from this process were identified.

RESULTS: SURVEY

Effect of different visualization conditions
Figure 4 presents the priors elicited from the participants in
our survey for each condition. Although there appears to be a
lot of variation in the priors within each condition, we do not
see any substantial differences between conditions. Similarly,
we analysed the location and scale values (not shown) chosen
by participants and found these to be similar across conditions.

“Weakly informative” means many different things
The normative advice from some prominent Bayesian re-
searchers [18, 19, 46] for choosing priors is to choose “weakly
informative priors”. While some participants in our survey
have explicitly stated that they tried to select weakly infor-
mative priors, several others described strategies that we in-
terpreted as closely resembling those for setting a weakly
informative prior. For example:

chose prior for intercept to eliminate density at large num-
ber of pumps [...] since I know the balloon will pop be-
fore hitting 100 pumps. [Prior chosen for α : student_t
(3.92,0.21) in response scale density visualization]

Scale of priors was chosen to exclude values greater than
128, with most likely values between 0 and 64. [Prior
chosen for α: normal(3.52,0.89) in prior predictive
density visualization]

Probability density of the prior distributions chosen by participants for β (on the multiplicative scale)

Probability density of the prior distributions chosen by participants for α (on the response scale)
0 16 32 48 64 80 96 112 128 0 16 32 48 64 80 96 112 128 0 16 32 48 64 80 96 112 128
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Priors chosen by participants in 
visualization: Probability density on the 
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Figure 4. Probability densities of the priors specified by participants in our survey



Based on these descriptions, we coded that 44% (N = 22) of
participants tried to select a weakly informative prior for α

(the intercept parameter), while 52% (N = 26) tried to select a
weakly informative prior for β (mean difference parameter).

One way to interpret Gelman’s definition of weakly infor-
mative priors is that such priors should minimize the prior
probability for theoretically impossible values, which in the
scenario presented to participants are values greater than 128.
Hence, we calculate the prior predictive probability mass out-
side the interval [0, 128] by integrating the probability density
function for the Poisson process over all possible values of the
α parameter (see the supplementary materials for details). We
find that the “weakly informative priors” chosen by 68% (15 /
22) of the participants allocated less than 5% prior predictive
probability for values greater than 128 (Figures 5B and 5C).
However, some of the elicited priors may allocate little or no
density at large values, and hence might be considered to be
informative rather than weakly informative.

Since most priors elicited for the mean difference parameters
were centered around zero (no difference between the two
conditions), we compared the values of the scale parameter
(Figures 5D & 5E). We find that the “weakly informative” pri-
ors chosen by participants encompassed the entire possible
spectrum of scale values, indicating many different interpreta-
tions of the notion of weakly informative priors.

setting a prior shape that is wide enough to leave the
data drive the posterior sampling, but not too wide as
to allow ridiculously absurd values. [Prior chosen for
β : student_t(-0.04,0.94) in response scale density
visualization]

chose distributions that didn’t give significant weight to
very implausible values. [Prior chosen for β : normal
(0.06,0.23) in response scale density visualization]

While one participant applying a “weakly informative” ap-
proach chose the smallest value for the scale parameter possi-
ble using our elicitation interface (0.2), at least five (out of 26)
people chose the largest value for the scale parameter possible
using our elicitation interface (1.0) (Figure 5E).

This indicates that although the notion of weakly informative
priors is quite popular, there may be quite different interpreta-
tions of how to implement such priors in practice. As can be
seen from Figure 5D, several of the elicited prior distributions
are assigning substantial probability density at effects of 3× or
1/3× in the test condition over the control condition. This may
simply be because analysts have different prior expectations of
what effect sizes to expect in this context. On the other hand,
it may represent misinterpretations of the meaning of effect
sizes on a log scale—from our data it is hard to say. What
is clear is that the operationalization of “weakly informative
prior”, particularly for this kind of difference parameter, is not
consistent across the analysts who participated in our survey.

RESULTS: INTERVIEWS

Philosophy & experience determine the prior
Researchers can specify prior distributions at different levels
of informativeness [14, 46]. Since participants in our study
had to specify a proper prior, they could not choose fully
“uninformative”, unbounded flat distributions. Under those
constraints, most participants’ elicited prior can be considered
either informative, weakly informative, or tending towards
uninformative.

Participants’ choice of informativeness level was influenced
by their statistical ideology and past experience. Their choice
of level also affected the extent to which they used the infor-
mation (such as study design, properties of the BART task,
and meta-analysis results) that we presented to them. Broadly
speaking, participants fell into the following categories:
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1. Those trying to specify an informative prior. They tried to
incorporate information from the meta-analysis into the prior.
They generally wanted their intercept prior to have the majority
of its probability mass within the interval of 24 to 44—the
range provided in the meta analysis—and the expected value
for the intercept to be roughly the mid-point of this interval.

2. Those trying to specify a weakly informative priors. They
usually only considered the experiment design:

always worry about cleaving too closely to meta-analyses
of past studies, because as we all know, [...] it’s better to
be slightly wider with the prior than slightly too narrow.

In general, they wanted to minimize the total probability mass
that the prior assigned to values greater than 128, as those
values are not theoretically possible.

3. Those trying to set a prior which tends to uninformative.
They chose the largest possible scale value possible using the
interactive visualization. They also expressed that they would
rather have set a more diffuse prior than what was allowed.

In the absence of more specific information, past experience

influences prior skepticism
Since we did not provide meta-analysis information for the β

parameter, we found that participants relied very heavily on
their past experience in choosing the prior. Past experience
determined their degree of skepticism regarding the presence
of an effect, which in turn affected their choice of prior.

So my prior would have allowed me up to two times
greater. [...] for something like social science that seems
like that’s pretty big. That still seems pretty permissible
— P1 on choosing a normal(0,0.2) prior for β .

Just my prior experience with power poses [...] I figured
that the effect is not going to be that large. — P3 on
choosing a student_t(3,0,0.2) prior for β .

For instance, participants with a background in, psychology, or
familiarity with studies in psychology, or with the replication
crisis in the social sciences, leaned towards very skeptical
zero-centered priors: priors with the smallest possible value
of scale. In other words, they set their priors such that there
would need to be strong evidence for them to conclude that
there is a large effect present.

one of those situations where you want some amount of
expert knowledge, like of what an effect size realistically
should be — P7 on choosing a prior for β .

Some participants wanted to set a prior which did not preclude
even large, but probable effect sizes. Participants (P5, P7
and P9) mentioned that they would like to consult an expert
regarding what effect sizes are reasonable. However, their
field of research, past experience and training appeared to
influence what they considered to be large, improbable effect
sizes. For instance, P5 and P7 believed that effect sizes of 3×
or 1

3× were unlikely, and hence chose a small value for the
scale parameter, whereas P8 and P9 wanted to choose more
diffuse prior than was possible with the interface:

would not be comfortable setting a uniform prior on this,
would definitely want a more diffuse prior than what is
possible. — P9 on setting a normal(0,1) prior for β .

If I don’t have any information on the parameters I’m
interested in, you just start with the uniform [..] and like
just try to set the bounds for something that’s reasonable
— P8 on choosing a student_t(3,0,1) prior for β .

By choosing the largest possible value for the scale parameter,
some participants tended to an uninformative or diffuse prior
for β . P8, who usually sets uniform prior, said that they’d
rather set a flat prior from [-10, 10] so as to be inclusive of all
values they considered plausible.

Student’s t as a hedge against mistakes
For both the parameters, participants could choose between
a prior from a normal or a Student’s t distribution with three
degrees of freedom. Participants in general were aware that
the Student’s t distribution assigned more probability density
in the tails compared to the normal distribution. The Student’s
t distribution is the default prior on the intercept in brms [3], a
commonly-used statistical package for Bayesian analysis in R.

I want to be close to zero, but I wanted a t distri-
bution because maybe I’m wrong — P3 on choosing
student_t(3, 0, 0.2) prior on β .

heavy tail on the Student t lets them be a bit wrong on [...]
without hurting us too much — P7 on choosing priors
based on information elicited from domain experts.

Participants often chose the Student’s t distribution when they
expressed a desire to account for the possibility that they were
wrong in their choice of prior. On the other hand, participants
chose the normal distribution when they did not express a
need to accommodate the possibility that they were wrong:e.g.,
some participants who chose a weakly informative prior for
the intercept that allocated most of its mass between 0 and 128
were confident that the intercept will not lie outside that range
(impossible given the nature of the task), and so did not feel
the need to hedge by using a Student’s t distribution.

Different visualizations, different strategies
We found that most participants primarily used a combination
of three strategies for determining their choice of priors:

1. Centrality matching: trying to to match a central measure
(such as mean / median of the prior) to a particular value.
For example, if one’s prior belief for the expected number
of pumps is 50, one might center the prior on this value.

2. Interval matching: trying to match the tails of the prior dis-
tribution to a particular interval. This was usually observed
in elicitation using parameter scale density visualization, as
users have a better sense of the 66% or 95% central interval
with the familiar bell shape. For example, if one is trying
to set a weakly informative prior on the parameter scale,
then one might determine an interval, say 0 to 128, where
they want approximately 95% of the prior probability to be.
They will then calculate the logarithm of those values, and
try to match the tails of the visualization so that the desired
probability lies within that interval.



3. Visual probability mass allocation: trying to visually assess
how much mass is allocated above or below specific values.
This is an approximate strategy, in contrast to the more
precise approach used in interval matching.

The interval matching strategy can be implemented in two
ways: (1) convert values from the outcome scale to the param-
eter scale using the logarithm function and then use these to
determine the scale parameter of the distribution (based on tail
probabilities); (2) calculate the exponent of a value, usually for
values around the tails of the distributions, and then determine
the tail probabilities assigned to those values.

Visualizations affect which strategy is used
Participants appeared to use different strategies depending
on the visualization they used for prior elicitation. Some
participants strictly adhered to centrality matching and interval
matching strategies, whereas others used a combination of
all three strategies. We found that participants may have a
preference towards a certain combination of strategies, which
might affect their preferences for particular visualizations.

When priors were elicited through the parameter scale density
visualization, participants relied primarily on centrality match-
ing and interval matching. Here, the probability density was
symmetrical and took the form of the familiar bell shape, per-
haps making it easier for participants to determine the mean,
median, or central 66% or 95% intervals of the distribution,
making it easier to implement the interval matching. Interpret-
ing distribution on the outcome scale when shown only the
parameter scale requires performing exponential transforma-
tions, which prevented participants in these conditions from
visually inspecting the mass allocation across different values
on the outcome scale.

P1 preferred the parameter scale density visualization because
the “visual matched the actual prior distribution”, and felt that
the response scale density visualization added another layer
of complexity which they found difficult to use. Only two
of the nine participants preferred using the parameter scale
density visualization for prior elicitation. We believe that may
be because of their strong preference towards the use of the
centrality matching and interval matching strategies.

All other participants said that they disliked setting the prior
using the parameter scale density visualization, as they seemed
more comfortable thinking of the probability density that the
prior assigns to different values on the outcome scale and not
on the parameter scale. The parameter scale density visual-
ization required participants to switch between outcome and
parameter scales using logarithmic and exponential transfor-
mations, which P6 described as “performing mental gymnas-
tics”. P7 mentioned that “if you provide logarithms of these
numbers, it may be easier to do, but really it’s just indirectly
getting through that”. P7 also mentioned that when eliciting
domain knowledge from experts, “you can’t ask people what
the log mean is, you have to ask what the mean is”. Inter-
preting the probability density of the prior was easier with the
response scale density visualization and prior predictive den-
sity visualization; the rest of our interviewees explicitly (and
strongly) preferred the response scale density visualization.

The response scale density visualization allows participants to
visually set the prior and inspect probability density assigned
to values on the outcome scale; the prior predictive density
visualization allows them to see actual draws from the prior
predictive distributions. Participants appear to have primarily
used a combination of the visual probability mass allocation
and centrality matching strategies in these conditions. Al-
though participants could use multiple strategies when the
priors were elicited through the response scale density visual-
ization or the prior predictive density visualization, because
the prior distributions were not in the familiar bell shape of the
normal or Student’s t distributions, using the interval matching
strategy may have been more difficult.

Transformed coefficients for differences in GLMs can be
difficult to reason about
Setting the prior on the β parameter was trickier because it
acts multiplicatively; e.g. when eβ = 2, the mean for the test
condition would be twice the mean for the control condition.
Thus, generalised linear models can be easily misinterpreted.
For instance, P9 was “not sure” how to set priors for the model,
and hence, was “trying to set it (the prior) to be as diffuse as
possible...”. Generally, researchers found reasoning in terms
of this multiplicative effect difficult when the parameter scale
density visualization was used for prior elicitation, but much
easier with the response scale density visualization. For exam-
ple, P5 initially chose their prior as a Normal(0, 1) distribution
because, “the tails are not that fat. I don’t think the effect is
going to be 5 or 3, so the majority of the density is between -2
and 2 which I think would be where the effect might be found”.
However, they revised the prior when presented with the re-
sponse scale density visualization, saying “this [...] definitely
makes me think a bit more about how the standard deviation
of the prior manifests as an effect on the natural scale.”.

However, P1 appeared to be more comfortable reasoning about
effect sizes on the parameter scale. They were aware that “dif-
ferences of ±0.5, on the log scale, can be very large” and
tend to think more in terms of absolute differences, but found
that “thinking of the prior in terms of multiplicity is more diffi-
cult”. Similarly, P8, who tends to set “uninformative”, uniform
priors in their own field of work, found the prior elicitation
process using the parameter scale density visualization chal-
lenging, and was unsure of what prior to choose. Hence, when
presented with the response scale density visualization, they
found the visualization even more difficult to interpret, partly
because they have “never seen the β presented this way”.

DISCUSSION

Weakly informative priors are popular but implemented
inconsistently
Weakly-informative priors are widely advocated for in the liter-
ature and in introductory textbooks [16,39]. Many researchers
in our survey claimed to have used weakly informative priors,
yet the actual priors they chose varied. Some of this variance
is likely due to the different backgrounds and experience of
participants influencing aspects of their priors (e.g., their level
of skepticism); however, it seems likely that at least some of
this variance is due to a gap between the high-level notion of



weakly informative priors and the particulars of how to im-
plement them in practice. Normative recommendations state
that weakly informative priors should be intentionally weaker
than whatever actual prior knowledge is available [15, 46], but
how much weaker and in what way is not always well-defined.
The absence of concrete guidelines means the prior depends
more on analyst taste and experience, making the task dif-
ficult for novices. Normative guidance might be improved
by taking advantage of the prior setting strategies we have
discussed: novices can be explicitly trained in prior-setting
strategies to create weakly-informative priors, like centrality
matching, interval matching, or visual probability mass allo-
cation. For example, specific examples of converting domain
knowledge about the reasonable range of a parameter into a
scale parameter on a normal or Student’s t distribution could
be incorporated into pedagogical material.

Surfacing informativeness, skepticism, and matching
strategies to aid novices in elicitation
Prior-setting strategies could be surfaced in prior elicitation
interfaces to help novices. Because people may use different
strategies depending on the prior visualization they see, show-
ing certain visualizations might improve prior elicitation by
encouraging use of a better strategy. For instance, mass allo-
cation may be a better strategy than interval matching when
attempting to constrain priors from unreasonably large values.
Since mass allocation is easier to do with a response scale vi-
sualization, switching to that visualization might help novices
adopt a better strategy.

The deep connection between prior-setting philosophies (in-
formativeness and skepticism), what information to use, and
how to use it could also be made explicit in teaching materials.
In our experience (corroborated by Phelan et al. [42]), novices
to Bayesian inference feel lost when first attempting to set a
prior: they do not know where to begin, what information to
incorporate, or how to incorporate it. An elicitation interface
might first attempt to establish the user’s desired high-level
approach—such as a weakly informative approach—or indeed
help the user discover what approach they wish to take. Such a
system could then provide guidance in what information might
be useful to set that kind of prior. This information might lead
directly to elicitation modes, such as zero-centered priors with
interval matching for a straightforward weakly informative
prior.

In such an interface, visualizations used for prior elicitation
would be designed to explicitly support the strategies neces-
sary to enact the desired prior type. For example, annotations
of central tendencies and 50%, 80%, or 95% intervals could
help participants with centrality and interval matching strate-
gies. The connection between intervals on a distribution, scale,
parameters, and prior knowledge could be encoded directly:
e.g., with explicit support for using standard errors from previ-
ous studies to set scale parameters on a prior (if an informa-
tive prior is desired), or with explicit support for allocating
a desired proportion of the distribution to a particular range
(perhaps for a weakly informative prior).

Theoretical versus practical flexibility in prior setting
Traditionally, computational efficiency was an important con-
sideration in choosing priors [46], necessitating use of con-
jugate priors, for which posteriors are easy to compute. Yet
conjugate priors are restrictive [5]: they prescribe the par-
ticular shape of the prior that can be used, which may not
reflect the analyst’s desired prior. One promise of modern
Bayesian methods such as Hamiltonian Monte Carlo (as used
by Stan [4]) is that it supports a much wider range of priors
without sacrificing computational efficiency. This—in theory—
means that users are free to select whatever shape of prior best
captures their prior knowledge. In practice, we wonder if this
promise is regularly fulfilled: while we restricted prior setting
in this study to normal and Student’s t distributions (thus can-
not comment on what other distributions participants might
have chosen), few participants seemed to express an interest
in looking outside of those prior types. One participant who
did so noted that while he might prefer a different prior set on
the outcome scale (rather than the log scale), setting such a
prior is difficult given the (common) generalized linear model
parameterization we used. This presents a trade-off between
reparameterizing the model, transforming the desired prior
density analytically from the response scale to the log scale,
or using a similar (but perhaps less ideal) prior that is easy to
specify within the syntax of brms. For novices, the last option
is probably the only one available. This suggests that the full
technical promise of a wider variety of priors is not yet realized
in practice for many users. Elicitation interfaces that aid in
simultaneously choosing priors and model parameterizations
(or aid in transforming priors between scales) could further
unlock the technical promise of modern Bayesian samplers.

Limitations
Because we recruited through our Twitter networks, we sam-
pled largely from users who perform Bayesian analysis with
Stan and related R packages such as brms and rstanarm.
Weakly informative priors, advocated for by Gelman, may
be more common in this community as Gelman is a core mem-
ber of the Stan development team, as opposed to other experts
who may recommend using flat or diffuse priors [34]. We only
tested one model type, and though that model comes from
a very common model class (generalized linear models) our
results may not reflect challenges with other common model
types, such as hierarchical models.

CONCLUSION
We identified a variety of prior-setting philosophies and strate-
gies. Our focus on descriptive analysis of prior setting is
meant to complement normative advice: this is particularly
important given the inconsistent implementation of commonly-
recommended weakly informative priors. We hope that our
results not only can improve future prior setting recommen-
dations but can be incorporated into interactive prior-setting
visualizations for both novices and experts.
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